科目: 来源: 题型:
【题目】已知
为坐标原点,椭圆
:
的左、右焦点分别为
,
.过焦点且垂直于
轴的直线与椭圆
相交所得的弦长为3,直线
与椭圆
相切.
(1)求椭圆
的标准方程;
(2)是否存在直线
:
与椭圆
相交于
两点,使得
?若存在,求
的取值范围;若不存在,请说明理由!
查看答案和解析>>
科目: 来源: 题型:
【题目】某中学为研究学生的身体素质与体育锻炼时间的关系,对该校200名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)
平均每天锻炼的时间/分钟 |
|
|
|
|
|
|
总人数 | 20 | 36 | 44 | 50 | 40 | 10 |
将学生日均体育锻炼时间在
的学生评价为“锻炼达标”.
(1)请根据上述表格中的统计数据填写下面的
列联表;
锻炼不达标 | 锻炼达标 | 合计 | |
男 | |||
女 | 20 | 110 | |
合计 |
并通过计算判断,是否能在犯错误的概率不超过0.025的前提下认为“锻炼达标”与性别有关?
(2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出5人,进行体育锻炼体会交流,再从这5人中选出2人作重点发言,求作重点发言的2人中,至少1人是女生的概率.
参考公式:
,其中
.
临界值表
| 0.10 | 0.05 | 0.025 | 0.010 |
| 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目: 来源: 题型:
【题目】在四棱锥
中,底面
是矩形,
平面
,
,
,以
的中点
为球心、
为直径的球面交
于点
,交
于点
.
![]()
(1)求证:
平面
;
(2)求直线
与平面
所成的角的大小;
(3)求点
到平面
的距离.
查看答案和解析>>
科目: 来源: 题型:
【题目】将
个不同的红球和
个不同的白球,放入同一个袋中,现从中取出
个球.
(1)若取出的红球的个数不少于白球的个数,则有多少种不同的取法;
(2)取出一个红球记
分,取出一个白球记
分,若取出
个球的总分不少于
分,则有多少种不同的取法;
(3)若将取出的
个球放入一箱子中,记“从箱子中任意取出
个球,然后放回箱子中”为一次操作,如果操作三次,求恰有一次取到
个红球并且恰有一次取到
个白球的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】随着计算机的出现,图标被赋予了新的含义,又有了新的用武之地.在计算机应用领域,图标成了具有明确指代含义的计算机图形.如图所示的图标是一种被称之为“黑白太阳”的图标,该图标共分为3部分.第一部分为外部的八个全等的矩形,每一个矩形的长为3、宽为1;第二部分为圆环部分,大圆半径为3,小圆半径为2;第三部分为圆环内部的白色区域.在整个“黑白太阳”图标中随机取一点,则此点取自图标第三部分的概率为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
过点
,且右焦点为
.
(1)求椭圆
的方程;
(2)过点
的直线
与椭圆
交于
两点,交
轴于点
.若
,求证:
为定值;
(3)在(2)的条件下,若点
不在椭圆
的内部,点
是点
关于原点
的对称点,试求三角形
面积的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2. 若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是 .
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com