科目: 来源: 题型:
【题目】如图,在四棱锥
中,底面
为正方形,且
,其中
,
,
分别是
,
,
的中点,动点
在线段
上运动时,下列四个结论:①
;②
;③
面
;④
面
,
其中恒成立的为( )
![]()
A. ①③ B. ③④ C. ①④ D. ②③
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,
,其中
且
,
.
(1)若函数f(x)与g(x)有相同的极值点(极值点是指函数取极值时对应的自变量的值),求k的值;
(2)当m>0,k = 0时,求证:函数
有两个不同的零点;
(3)若
,记函数
,若
,使
,求k的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】某鲜花小镇圈定一块半径为1百米的圆形荒地,准备建成各种不同鲜花景观带.为了便于游客观赏,准备修建三条道路AB,BC,CA,其中A,B,C分别为圆上的三个进出口,且A,B分别在圆心O的正东方向与正北方向上,C在圆心O南偏西某一方向上.在道路AC与BC之间修建一条直线型水渠MN种植水生观赏植物黄鸢尾(其中点M,N分别在BC和CA上,且M在圆心O的正西方向上,N在圆心O的正南方向上),并在区域MNC内种植柳叶马鞭草.
![]()
(1)求水渠MN长度的最小值;
(2)求种植柳叶马鞭草区域MNC面积的最大值(水渠宽度忽略不计).
查看答案和解析>>
科目: 来源: 题型:
【题目】定义:圆心到直线的距离与圆的半径之比为直线关于圆的距离比
.
(1)设圆
求过
(2,0)的直线关于圆
的距离比
的直线方程;
(2)若圆
与
轴相切于点
(0,3)且直线
=
关于圆
的距离比
,求此圆的
的方程;
(3)是否存在点
,使过
的任意两条互相垂直的直线分别关于相应两圆
的距离比始终相等?若存在,求出相应的点
点坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系
中,动圆
与圆
外切,且圆
与直线
相切,记动圆圆心
的轨迹为曲线
.
(1)求曲线
的轨迹方程;
(2)设过定点
的动直线
与曲线
交于
两点,试问:在曲线
上是否存在点
(与
两点相异),当直线
的斜率存在时,直线
的斜率之和为定值?若存在,求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,由半圆
和部分抛物线
合成的曲线
称为“羽毛球开线”,曲线
与
轴有
两个焦点,且经过点![]()
![]()
(1)求
的值;
(2)设![]()
为曲线
上的动点,求
的最小值;
(3)过
且斜率为
的直线
与“羽毛球形线”相交于点
三点,问是否存在实数
使得
?若存在,求出
的值;若不存在,请说明理由。
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=(3-x)ex,g(x)=x+a(a∈R)(e是自然对数的底数,e≈2.718…).
(1)求函数f(x)的极值;
(2)若函数y=f(x)g(x)在区间[1,2]上单调递增,求实数a的取值范围;
(3)若函数h(x)=
在区间(0,+∞)上既存在极大值又存在极小值,并且函数h(x)的极大值小于整数b,求b的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥
中,
,
,
,
.
![]()
(1)求证:
;
(2)若
,
,
为
的中点.
(i)过点
作一直线
与
平行,在图中画出直线
并说明理由;
(ii)求平面
将三棱锥
分成的两部分体积的比.
查看答案和解析>>
科目: 来源: 题型:
【题目】有一种大型商品,
、
两地都有出售,且价格相同,现
地的居民从
、
两地之一购得商品后回运的运费是:
地每公里的运费是
地运费的
倍,已知
、
两地相距
,居民选择
或
地购买这种商品的标准是:包括运费和价格的总费用较低.
(1)求
地的居民选择
地或
地购物总费用相等时,点
所在曲线的形状;
(2)指出上述曲线内、曲线外的居民应如何选择购货地点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com