科目: 来源: 题型:
【题目】已知椭圆C的两个顶点分别为A(2,0),B(2,0),焦点在x轴上,离心率为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4:5.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线:上一点到焦点的距离为4,动直线交抛物线于坐标原点O和点A,交抛物线的准线于点B,若动点P满足,动点P的轨迹C的方程为.
(1)求出抛物线的标准方程;
(2)求动点P的轨迹方程;
(3)以下给出曲线C的四个方面的性质,请你选择其中的三个方面进行研究:①对称性;②范围;③渐近线;④时,写出由确定的函数的单调区间.
查看答案和解析>>
科目: 来源: 题型:
【题目】设椭圆C:的两个焦点是和,且椭圆C与圆有公共点.
(1)求实数a的取值范围;
(2)若椭圆C上的点到焦点的最短距离为,求椭圆C的方程;
(3)对(2)中的椭圆C,直线l:与C交于不同的两点M、N,若线段MN的垂直平分线恒过点,求实数m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数且 )曲线的参数方程为(为参数,且),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为: ,曲线的极坐标方程为.
(1)求与的交点到极点的距离;
(2)设与交于点,与交于点,当在上变化时,求的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知双曲线=1(a>0,b>0)的左、右焦点分别为F1,F2,点O为双曲线的中心,点P在双曲线右支上,△PF1F2内切圆的圆心为Q,圆Q与x轴相切于点A,过F2作直线PQ的垂线,垂足为B,则下列结论成立的是( )
A. |OA|>|OB|B. |OA|<|OB|
C. |OA|=|OB|D. |OA|与|OB|大小关系不确定
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆O经过椭圆C:=1(a>b>0)的两个焦点以及两个顶点,且点(b,)在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l与圆O相切,与椭圆C交于M、N两点,且|MN|=,求直线l的倾斜角.
查看答案和解析>>
科目: 来源: 题型:
【题目】交强险是车主须为机动车购买的险种.若普通座以下私家车投保交强险第一年的费用(基本保费)是元,在下一年续保时,实行费率浮动制,其保费与上一年度车辆发生道路交通事故情况相联系,具体浮动情况如下表:
类型 | 浮动因素 | 浮动比率 |
上一年度未发生有责任的道路交通事故 | 下浮 | |
上两年度未发生有责任的道路交通事故 | 下浮 | |
上三年度未发生有责任的道路交通事故 | 下浮 | |
上一年度发生一次有责任不涉及死亡的道路交通事故 | ||
上一年度发生两次及以上有责任不涉及死亡的道路交通事故 | 上浮 | |
上三年度发生有责任涉及死亡的道路交通事故 | 上浮 |
某一机构为了研究某一品牌座以下投保情况,随机抽取了辆车龄满三年的该品牌同型号私家车的下一年续保情况,统计得到如下表格:
类型 | ||||||
数量 |
|
|
|
|
|
|
以这辆该品牌汽车的投保类型的频率视为概率.
(I)试估计该地使用该品牌汽车的一续保人本年度的保费不超过元的概率;
(II)记为某家庭的一辆该品牌车在第四年续保时的费用,求的分布列和期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com