相关习题
 0  263703  263711  263717  263721  263727  263729  263733  263739  263741  263747  263753  263757  263759  263763  263769  263771  263777  263781  263783  263787  263789  263793  263795  263797  263798  263799  263801  263802  263803  263805  263807  263811  263813  263817  263819  263823  263829  263831  263837  263841  263843  263847  263853  263859  263861  263867  263871  263873  263879  263883  263889  263897  266669 

科目: 来源: 题型:

【题目】是双曲线:的右焦点,左支上的点,已知,则周长的最小值是_______

【答案】

【解析】

设左焦点为,利用双曲线的定义,得到当三点共线时,三角形的周长取得最小值,并求得最小的周长.

设左焦点为,根据双曲线的定义可知,所以三角形的周长为,当三点共线时,取得最小值,三角形的周长取得最小值. ,故三角形周长的最小值为.

【点睛】

本小题主要考查双曲线的定义,考查三角形周长最小值的求法,属于中档题.

型】填空
束】
16

【题目】已知分别是双曲线的左、右焦点,过点作垂直与轴的直线交双曲线于两点,若为锐角三角形,则双曲线的离心率的取值范围是_______

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆C)的左、右焦点分别为,离心率,点在椭圆C上,直线l交椭圆于AB两点.

1)求椭圆C的标准方程;

2)当时,点Ax轴上方时,求点AB的坐标;

3)若直线y轴于点M,直线y轴于点N,是否存在直线l,使得的面积满足,若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,圆,直线,直线过点,倾斜角为,以原点为极点,轴的正半轴为极轴建立极坐标系.

(1)写出直线与圆的交点极坐标及直线的参数方程;

(2)设直线与圆交于两点,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)当时,函数上的最小值为,若不等式有解,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知为坐标原点,抛物线与直线交于点两点,且.

(1)求抛物线的方程;

(2)线段的中点为,过点且斜率为的直线交抛物线两点,若直线分别与直线交于两点,当时,求斜率的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】按照国际乒联的规定,标准的乒乓球在直径符合条件下,重量为2.7克,其重量的误差在区间内就认为是合格产品,在正常情况下样本的重量误差服从正态分布.现从某厂生产的一批产品中随机抽取10件样本,其重量如下:

2.72 2.68 2.7 2.75 2.66 2.7 2.6 2.69 2.7 2.8

(1)计算上述10件产品的误差的平均数及标准差

(2)①利用(1)中求的平均数,标准差,估计这批产品的合格率能否达到

②如果产品的误差服从正态分布,那么从这批产品中随机抽取10件产品,则有不合格产品的概率为多少.(附:若随机变量服从正态分布,则.用0.6277,用0.9743分别代替计算)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,M是线段EF的中点,二面角的大小为60°.

1)求证:平面BDE

2)试在线段AC上找一点P,使得PFCD所成的角是60°.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率,左顶点为.过点作直线交椭圆于另一点,交轴于点,点为坐标原点.

1)求椭圆的方程:

2)已知的中点,是否存在定点,对任意的直线恒成立?若存在,求出点的坐标;若不存在说明理由;

3)过点作直线的平行线与椭圆相交,为其中一个交点,求的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,三棱锥中,的中点,为正三角形,,平面平面.

(1)求证:

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】历史上数列的发展,折射出许多有价值的数学思想方法,对时代的进步起了重要的作用,比如意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233,….即,此数列在现代物理、准晶体结构及化学等领域有着广泛的应用,若此数列被4整除后的余数构成一个新的数列,又记数列满足,则的值为_____

查看答案和解析>>

同步练习册答案