相关习题
 0  263725  263733  263739  263743  263749  263751  263755  263761  263763  263769  263775  263779  263781  263785  263791  263793  263799  263803  263805  263809  263811  263815  263817  263819  263820  263821  263823  263824  263825  263827  263829  263833  263835  263839  263841  263845  263851  263853  263859  263863  263865  263869  263875  263881  263883  263889  263893  263895  263901  263905  263911  263919  266669 

科目: 来源: 题型:

【题目】在四棱锥中,平面平面,底面为矩形,分别为线段上一点,且.

(1)证明:

(2)证明:平面,并求三棱锥的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在正方体中,点是线段上的动点,则下列说法错误的是( )

A. 当点移动至中点时,直线与平面所成角最大且为

B. 无论点上怎么移动,都有

C. 当点移动至中点时,才有相交于一点,记为点,且

D. 无论点上怎么移动,异面直线所成角都不可能是

查看答案和解析>>

科目: 来源: 题型:

【题目】某电子商务平台的管理员随机抽取了1000位上网购物者,并对其年龄(在10岁到69岁之间)进行了调查,统计情况如下表所示.

年龄

人数

100

150

200

50

已知三个年龄段的上网购物的人数依次构成递减的等比数列.

(1)求的值;

(2)若将年龄在内的上网购物者定义为“消费主力军”,其他年龄段内的上网购物者定义为“消费潜力军”.现采用分层抽样的方式从参与调查的1000位上网购物者中抽取5人,再从这5人中抽取2人,求这2人中至少有一人是消费潜力军的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知等比数列{an}的前n项和为Sn,公比q0S2=2a2-2S3=a4-2,数列{an}满足a2=4b1nbn+1-n+1bn=n2+n,(nN*.

1)求数列{an}的通项公式;

2)证明数列{}为等差数列;

3)设数列{cn}的通项公式为:Cn=,其前n项和为Tn,求T2n.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知梯形中,,四边形为矩形,,平面平面

Ⅰ)求证:平面

Ⅱ)求平面与平面所成锐二面角的余弦值;

Ⅲ)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】是圆上的任意一点,是过点且与轴垂直的直线,是直线轴的交点,点在直线上,且满足.当点在圆上运动时,记点的轨迹为曲线.

(1)求曲线的方程;

(2)已知点,过的直线交曲线两点,交直线于点.判定直线的斜率是否依次构成等差数列?并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在长方体ABCD-A1B1C1D1中,底面ABCD为正方形,AA1=2AB=1EAD中点,FCC1中点.

1)求证:ADD1F

2)求证:CE//平面AD1F

3)求AA1与平面AD1F成角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知U=RA={x|a2x2-5ax-6<0}B{x||x-2|≥1}.

1)若a=1,求(UAB

2)求不等式a2x2-5ax-6<0aR)的解集.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知在平面直角坐标系中,动点与两定点连线的斜率之积为,记点的轨迹为曲线.

(1)求曲线的方程;

(2)若过点的直线与曲线交于两点,曲线上是否存在点使得四边形为平行四边形?若存在,求直线的方程,若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各名,将男性、女性使用微信的时间分成组:,,,,分别加以统计,得到如图所示的频率分布直方图.

(1)根据女性频率分布直方图估计女性使用微信的平均时间;

(2)若每天玩微信超过小时的用户列为微信控,否则称其为非微信控,请你根据已知条件完成的列联表,并判断是否有的把握认为微信控性别有关?

参考公式:,其中

参考数据:

查看答案和解析>>

同步练习册答案