科目: 来源: 题型:
【题目】如图,四边形是梯形,四边形是矩形,且平面平面,,,是线段上的动点.
(1)试确定点的位置,使平面,并说明理由;
(2)在(1)的条件下,求平面与平面所成锐二面角的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(I)若为曲线上的动点,点在线段上,且满足,求点的轨迹的直角坐标方程;
(Ⅱ)设直线的参数方程为(为参数,,且直线与曲线相交于,两点,求面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某校学生会开展了一次关于“垃圾分类”问卷调查的实践活动,组织部分学生干部在几个大型小区随机抽取了共50名居民进行问卷调查.调查结束后,学生会对问卷结果进行了统计,并将其中一个问题“是否知道垃圾分类方法(知道或不知道)”的调查结果统计如下表:
年龄(岁) | ||||||
频数 | 14 | 12 | 8 | 6 | ||
知道的人数 | 3 | 4 | 8 | 7 | 3 | 2 |
(1)求上表中的的值,并补全右图所示的的频率直方图;
(2)在被调查的居民中,若从年龄在的居民中各随机选取1人参加垃圾分类知识讲座,求选中的两人中仅有一人不知道垃圾分类方法的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的右焦点为,原点为,椭圆的动弦过焦点且不垂直于坐标轴,弦的中点为,过且垂直于线段的直线交射线于点.
(Ⅰ)证明:点在定直线上;
(Ⅱ)当最大时,求的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】某校高二理科8班共有50名学生参加学业水平模拟考试,成绩(单位:分,满分100分)大于或等于90分的为优秀,其中语文成绩近似服从正态分布,数学成绩的频率分布直方图如图.
(I)这50名学生中本次考试语文、数学成绩优秀的大约各有多少人?
(Ⅱ)如果语文和数学两科成绩都优秀的共有4人,从语文优秀或数学优秀的这些同学中随机抽取3人,设3人中两科都优秀的有人,求的分布列和数学期望;
(Ⅲ)根据(I)(Ⅱ)的数据,是否有99%以上的把握认为语文成绩优秀的同学,数学成绩也优秀?
附:①若~,则,;
②;
③
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的右焦点为,点在椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)点在圆上,且在第一象限,过作的切线交椭圆于两点,问: 的周长是否为定值?若是,求出定值;若不是,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,多面体ABCDEF中,四边形ABCD为矩形,二面角A-CD-F为60°,DE∥CF,CD⊥DE,AD=2,DE=DC=3,CF=6.
(1)求证:BF∥平面ADE;
(2)在线段CF上求一点G,使锐二面角B-EG-D的余弦值为.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com