科目: 来源: 题型:
【题目】已知两点A(0,﹣1),B(0,1),直线PA,PB相交于点P,且它们的斜率之积是
,记点P轨迹为C.
(1)求曲线C的轨迹方程;
(2)直线l与曲线C交于M,N两点,若|AM|=|AN|,求直线l的斜率k的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】椭圆
两焦点分别为
、
,且离心率
;
(1)设E是直线
与椭圆的一个交点,求
取最小值时椭圆的方程;
(2)已知
,是否存在斜率为k的直线l与(1)中的椭圆交于不同的两点A、B,使得点N在线段AB的垂直平分线上,若存在,求出直线l在y轴上截距的范围;若不存在,说明理由。
查看答案和解析>>
科目: 来源: 题型:
【题目】学校为了对教师教学水平和教师管理水平进行评价,从该校学生中选出300人进行统计.其中对教师教学水平给出好评的学生人数为总数的
,对教师管理水平给出好评的学生人数为总数的
,其中对教师教学水平和教师管理水平都给出好评的有120人.
(1)填写教师教学水平和教师管理水平评价的
列联表:
对教师管理水平好评 | 对教师管理水平不满意 | 合计 | |
对教师教学水平好评 | |||
对教师教学水平不满意 | |||
合计 |
请问是否可以在犯错误概率不超过0.001的前提下,认为教师教学水平好评与教师管理水平好评有关?
(2)若将频率视为概率,有4人参与了此次评价,设对教师教学水平和教师管理水平全好评的人数为随机变量
.
①求对教师教学水平和教师管理水平全好评的人数
的分布列(概率用组合数算式表示);
②求
的数学期望和方差.
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(
,其中
)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,三棱柱
的棱长均为2,O为AC的中点,平面A'OB⊥平面ABC,平面
⊥平面ABC.
![]()
(1)求证:A'O⊥平面ABC;
(2)求二面角A﹣BC﹣C'的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知动点P到两定点M(﹣3,0),N(3,0)的距离满足|PM|=2|PN|.
(1)求证:点P的轨迹为圆;
(2)记(1)中轨迹为⊙C,过定点(0,1)的直线l与⊙C交于A,B两点,求△ABC面积的最大值,并求此时直线l的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用
,化简,得
.设勾股形中勾股比为
,若向弦图内随机抛掷
颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在三棱锥P﹣ABC中,PA⊥平面ABC,AB⊥BC,PA=AB,D为PB中点,PC=3PE.
![]()
(1)求证:平面ADE⊥平面PBC;
(2)在AC上是否存在一点M,使得MB∥平面ADE?若存在,请确定点M的位置,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】以平面直角坐标系的原点为极点,
轴的正半轴为极轴,建立极坐标系,已知直线
的参数方程是
(m>0,t为参数),曲线
的极坐标方程为
.
(1)求直线
的普通方程和曲线
的直角坐标方程;
(2)若直线
与
轴交于点
,与曲线
交于点
,且
,求实数
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知△ABC的三个顶点分别为A(﹣3,0),B(2,1),C(﹣2,3),试求:
(1)边AC所在直线的方程;
(2)BC边上的中线AD所在直线的方程;
(3)BC边上的高AE所在直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com