科目: 来源: 题型:
【题目】已知椭圆的左、右焦点在轴上,中心在坐标原点,长轴长为4,短轴长为.
(1)求椭圆的标准方程;
(2)是否存在过的直线,使得直线与椭圆交于,?若存在,请求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】我们知道,地球上的水资源有限,爱护地球、节约用水是我们每个人的义务与责任.某市政府为了对自来水的使用进行科学管理,节约水资源,计划确定一个家庭年用水量的标准.为此,对全市家庭日常用水量的情况进行抽样抽查,获得了个家庭某年的用水量(单位:立方米),统计结果如下表及图所示.
分组 | 频数 | 频率 |
25 | ||
0.19 | ||
50 | ||
0.23 | ||
0.18 | ||
5 |
(1)分别求出,的值;
(2)若以各组区间中点值代表该组的取值,试估计全市家庭年均用水量;
(3)从样本中年用水量在(单位:立方米)的5个家庭中任选3个,作进一步的跟踪研究,求年用水量最多的家庭被选中的概率(5个家庭的年用水量都不相等).
查看答案和解析>>
科目: 来源: 题型:
【题目】在如图的程序框图中,若输入,,则输出的值是( )
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/21/1907086498037760/1907898837975040/STEM/25d20caaa911497ea3baaf4f7dee45a3.png]
A. 3 B. 7 C. 11 D. 33
查看答案和解析>>
科目: 来源: 题型:
【题目】四棱锥中,平面,底面四边形为直角梯形,,,,.
(Ⅰ)求证:平面平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)为中点,在四边形所在的平面内是否存在一点,使得平面,若存在,求三角形的面积;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆E的中心在坐标原点O,两个焦点分别为A(﹣1,0),B(1,0),一个顶点为H(2,0).
(1)求椭圆E的标准方程;
(2)对于x轴上的点P(t,0),椭圆E上存在点M,使得MP⊥MH,求实数t的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列的前项和为,且满足,,设,.
(Ⅰ)求证:数列是等比数列;
(Ⅱ)若,,求实数的最小值;
(Ⅲ)当时,给出一个新数列,其中,设这个新数列的前项和为,若可以写成(,且,)的形式,则称为“指数型和”.问中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com