科目: 来源: 题型:
【题目】如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图:
(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2020年我国生活垃圾无害化处理量
附注:
参考数据:,,,
参考公式:相关系数,回归方程中斜率和截距最小二乘估计公式分别为,
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点,点是圆上的动点,为线段的中点,为线段上点,且,设动点的轨迹为曲线.
(Ⅰ)求曲线的方程;
(Ⅱ)直线与曲线相交于、两点,与圆相交于另一点,且点、位于点的同侧,当面积最大时,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线, (为参数, 为倾斜角).以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的直角坐标方程为.
(Ⅰ)将曲线的直角坐标方程化为极坐标方程;
(Ⅱ)设点的直角坐标为,直线与曲线的交点为、,求的取值范围.
【答案】(I);(II).
【解析】试题分析:(Ⅰ)将由代入,化简即可得到曲线的极坐标方程;(Ⅱ)将的参数方程代入,得,根据直线参数方程的几何意义,利用韦达定理结合辅助角公式,由三角函数的有界性可得结果.
试题解析:(Ⅰ)由及,得,即
所以曲线的极坐标方程为
(II)将的参数方程代入,得
∴, 所以,又,
所以,且,
所以,
由,得,所以.
故的取值范围是.
【题型】解答题
【结束】
23
【题目】已知、、均为正实数.
(Ⅰ)若,求证:
(Ⅱ)若,求证:
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线, (为参数, 为倾斜角).以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的直角坐标方程为.
(Ⅰ)将曲线的直角坐标方程化为极坐标方程;
(Ⅱ)设点的直角坐标为,直线与曲线的交点为、,求的取值范围.
【答案】(I);(II).
【解析】试题分析:(Ⅰ)将由代入,化简即可得到曲线的极坐标方程;(Ⅱ)将的参数方程代入,得,根据直线参数方程的几何意义,利用韦达定理结合辅助角公式,由三角函数的有界性可得结果.
试题解析:(Ⅰ)由及,得,即
所以曲线的极坐标方程为
(II)将的参数方程代入,得
∴, 所以,又,
所以,且,
所以,
由,得,所以.
故的取值范围是.
【题型】解答题
【结束】
23
【题目】已知、、均为正实数.
(Ⅰ)若,求证:
(Ⅱ)若,求证:
查看答案和解析>>
科目: 来源: 题型:
【题目】为了响应市政府迎接全国文明城市创建活动的号召,某学校组织学生举行了文明城市创建知识类竞赛,为了了解本次竞赛中学生的成绩情况,从中抽取名学生的分数(满分为100分,得分取正整数,抽取学生的分数均在之内)作为样本进行统计,按照分成组,并作出如下频率分布直方图,已知得分在的学生有人.
求频率分布直方图中的的值,并估计学生分数的众数、平均数和中位数:
如果从三个分数段的学生中,按分层抽样的方法抽取人参与座谈会,然后再从两组选取的人中随机抽取人作进一步的测试,求这人中恰有一人得分在的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为;直线的参数方程为(为参数),直线与曲线分别交于,两点.
(1)写出曲线的直角坐标方程和直线的普通方程;
(2)若点的极坐标为,,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com