相关习题
 0  264291  264299  264305  264309  264315  264317  264321  264327  264329  264335  264341  264345  264347  264351  264357  264359  264365  264369  264371  264375  264377  264381  264383  264385  264386  264387  264389  264390  264391  264393  264395  264399  264401  264405  264407  264411  264417  264419  264425  264429  264431  264435  264441  264447  264449  264455  264459  264461  264467  264471  264477  264485  266669 

科目: 来源: 题型:

【题目】某测试团队为了研究饮酒驾车安全的影响,随机选取100名驾驶员先后在无酒状态、酒后状态下进行停车距离测试.测试的方案:电脑模拟驾驶,以某速度匀速行驶,记录下驾驶员的停车距离(驾驶员从看到意外情况到车子完全停下所需要的距离).无酒状态与酒后状态下的试验数据分别列于表1和表2.

1

停车距离(米)

频数

26

8

2

2

平均每毫升血液酒精含量毫克

10

30

50

70

90

平均停车距离

30

50

60

70

90

已知表1数据的中位数估计值为26,回答以下问题.

(Ⅰ)求的值,并估计驾驶员无酒状态下停车距离的平均数;

(Ⅱ)根据最小二乘法,由表2的数据计算关于的回归方程

(Ⅲ)该测试团队认为:驾驶员酒后驾车的平均停车距离大于(Ⅰ)中无酒状态下的停车距离平均数的3倍,则认定驾驶员是醉驾.请根据(Ⅱ)中的回归方程,预测当每毫升血液酒精含量大于多少毫克时为醉驾

(附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数

(Ⅰ)若,证明函数有唯一的极小值点;

(Ⅱ)设,记函数的最大值为M,求使得a的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,梯形中,,沿对角线折起,使点在平面内的射影恰在.

(Ⅰ)求证:

(Ⅱ)求异面直线所成的角;

(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数

(Ⅰ)若,求函数有零点的概率;

(Ⅱ)若,求函数无零点的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴,以相同的长度单位建立极坐标系.己知直线的直角坐标方程为,曲线C的极坐标方程为

1)设t为参数,若,求直线的参数方程和曲线C的直角坐标方程;

2)已知:直线与曲线C交于AB两点,设,且依次成等比数列,求实数a的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】[选修4-4:极坐标与参数方程]

在直角坐标系中,曲线的参数方程为是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的极坐标方程和曲线的直角坐标方程;

(2)若射线 与曲线交于两点,与曲线交于两点,求取最大值时的值

查看答案和解析>>

科目: 来源: 题型:

【题目】随着“北京八分钟”在韩国平昌冬奥会惊艳亮相,冬奥会正式进入了北京周期,全社会对冬奥会的热情空前高涨.

(1)为迎接冬奥会,某社区积极推动冬奥会项目在社区青少年中的普及,并统计了近五年来本社区冬奥项目青少年爱好者的人数(单位:人)与时间(单位:年),列表如下:

依据表格给出的数据,是否可用线性回归模型拟合的关系,请计算相关系数并加以说明(计算结果精确到0.01).

(若,则线性相关程度很高,可用线性回归模型拟合)

附:相关系数公式,参考数据.

(2)某冰雪运动用品专营店为吸引广大冰雪爱好者,特推出两种促销方案.

方案一:每满600元可减100元;

方案二:金额超过600元可抽奖三次,每次中奖的概率同为 ,且每次抽奖互不影响,中奖1次打9折,中奖2次打8折,中奖3次打7折. v

两位顾客都购买了1050元的产品,并且都选择第二种优惠方案,求至少有一名顾客比选择方案一更优惠的概率;

②如果你打算购买1000元的冰雪运动用品,请从实际付款金额的数学期望的角度分析应该选择哪种优惠方案.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,曲线与坐标轴的交点都在圆上.

(1)求圆的方程;

(2)若圆与直线交于两点,且,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】空气质量按照空气质量指数大小分为七档(五级),相对应空气质量的七个类别,指数越大,说明污染的情况越严重,对人体危害越大.

指数

级别

类别

户外活动建议

可正常活动

轻微污染

易感人群症状有轻度加剧,健康人群出现刺激症状,心脏病和呼吸系统疾病患者应减少体积消耗和户外活动.

轻度污染

中度污染

心脏病和肺病患者症状显著加剧,运动耐受力降低,健康人群中普遍出现症状,老年人和心脏病、肺病患者应减少体力活动.

中度重污染

重污染

健康人运动耐受力降低,由明显强烈症状,提前出现某些疾病,老年人和病人应当留在室内,避免体力消耗,一般人群应尽量减少户外活动.

现统计包头市市区201610月至11月连续60天的空气质量指数,制成如图所示的频率分布直方图.

(Ⅰ)求这60天中属轻度污染的天数;

(Ⅱ)将频率分布直方图中的五组从左到右依次命名为第一组,第二组,,第五组.从第一组和第五组中的所有天数中抽出两天,记它们的空气质量指数分别为,求事件的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知四棱锥中,底面.

(1)当变化时,点到平面的距离是否为定值?若是,请求出该定值;若不是,请说明理由;

(2)当直线与平面所成的角为45°时,求二面角的余弦值.

查看答案和解析>>

同步练习册答案