科目: 来源: 题型:
【题目】如图,四棱锥PABCD中,底面ABCD是矩形,PA⊥平面ABCD,AD=1,PA=AB=
,点E是棱PB的中点.
![]()
(1)求异面直线EC与PD所成角的余弦值;
(2)求二面角B-EC-D的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,抛物线方程为
,其顶点到焦点的距离为
.
(1)求抛物线的方程;
(2)若点
,设直线
与抛物线交于
、
两点,且直线
、
的斜率之和为
,试证明:对于任意非零实数
,直线
必过定点.
查看答案和解析>>
科目: 来源: 题型:
【题目】莱昂哈德·欧拉
,瑞士数学家、自然科学家.
岁时入读巴塞尔大学,
岁大学毕业,
岁获得硕士学位,他是数学史上最多产的数学家.其中之一就是他发现并证明欧拉公式
,从而建立了三角函数和指数函数的关系.若将其中的
取作
就得到了欧拉恒等式
,它是数学里令人着迷的一个公式,它将数学里最重要的几个量联系起来:两个超越数:自然对数的底数
,圆周率
;两个单位:虚数单位
和自然数单位
;以及被称为人类伟大发现之一的
,数学家评价它是“上帝创造的公式”请你根据欧拉公式:
,解决以下问题:
(1)试将复数
写成
(
、
,
是虚数单位)的形式;
(2)试求复数
的模.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,椭圆
:
的离心率是
,长轴是圆
:
的直径.点
是椭圆
的下顶点,
,
是过点
且互相垂直的两条直线,
与圆
相交于
,
两点,
交椭圆
于另一点
.
![]()
(1)求椭圆
的方程;
(2)当
的面积取最大值时,求直线
的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f (x)=xlnx-x.
(1)设g(x)=f (x)+|x-a|,a∈R.e为自然对数的底数.
①当
时,判断函数g(x)零点的个数;
②
时,求函数g(x)的最小值.
(2)设0<m<n<1,求证:![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】艾滋病是一种危害性极大的传染病,由感染艾滋病病毒
病毒
引起,它把人体免疫系统中最重要的CD4T淋巴细胞作为主要攻击目标,使人体丧失免疫功能
下表是近八年来我国艾滋病病毒感染人数统计表:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代码x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
感染者人数 |
|
|
|
|
|
|
| 85 |
请根据该统计表,画出这八年我国艾滋病病毒感染人数的折线图;
![]()
请用相关系数说明:能用线性回归模型拟合y与x的关系;
建立y关于x的回归方程
系数精确到
,预测2019年我国艾滋病病毒感染人数.
参考数据:
;
,
,
,
参考公式:相关系数
,
回归方程
中,
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
:
经过点
,
,直线
:
与椭圆
相交于
,
两点,与圆
相切与点
.
(1)求椭圆
的方程;
(2)以线段
,
为邻边作平行四边形
,若点
在椭圆
上,且满足
(
是坐标原点),求实数
的取值范围;
(3)
是否为定值,如果是,求
的值;如果不是,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com