科目: 来源: 题型:
【题目】定义:若数列
满足,存在实数
,对任意
,都有
,则称数列
有上界,
是数列
的一个上界,已知定理:单调递增有上界的数列收敛(即极限存在).
(1)数列
是否存在上界?若存在,试求其所有上界中的最小值;若不存在,请说明理由;
(2)若非负数列
满足
,
(
),求证:1是非负数列
的一个上界,且数列
的极限存在,并求其极限;
(3)若正项递增数列
无上界,证明:存在
,当
时,恒有
.
查看答案和解析>>
科目: 来源: 题型:
【题目】平顶山市公安局交警支队依据《中华人民共和国道路交通安全法》第
条规定:所有主干道路凡机动车途经十字口或斑马线,无论转弯或者直行,遇有行人过马路,必须礼让行人,违反者将被处以
元罚款,记
分的行政处罚.如表是本市一主干路段监控设备所抓拍的
个月内,机动车驾驶员不“礼让斑马线”行为统计数据:
月份 |
|
|
|
|
|
违章驾驶员人数 |
|
|
|
|
|
(Ⅰ)请利用所给数据求违章人数
与月份
之间的回归直线方程
;
(Ⅱ)预测该路段
月份的不“礼让斑马线”违章驾驶员人数.
参考公式:
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
、
是双曲线
:
(
,
)的两个顶点,点
是双曲线上异于
、
的一点,
为坐标原点,射线
交椭圆
:
于点
,设直线
、
、
、
的斜率分别为
、
、
、
.
(1)若双曲线
的渐近线方程是
,且过点
,求
的方程;
(2)在(1)的条件下,如果
,求△
的面积;
(3)试问:
是否为定值?如果是,请求出此定值;如果不是,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为
,再由乙猜甲刚才想的数字把乙猜的数字记为
,且
,若
,则称甲乙“心有灵犀”,现任意找两个人玩这个游戏,得出他们“心有灵犀”的概率为________
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
是偶函数,
.
(1)求
的值,并判断函数
在
上的单调性,说明理由;
(2)设
,若函数
与
的图像有且仅有一个交点,求实数
的取值范围;
(3)定义在
上的一个函数
,如果存在一个常数
,使得式子
对一切大于1的自然数
都成立,则称函数
为“
上的
函数”(其中,
).试判断函数
是否为“
上的
函数”,若是,则求出
的最小值;若不是,则说明理由.(注:
).
查看答案和解析>>
科目: 来源: 题型:
【题目】某工厂生产的产品
的直径均位于区间
内(单位:
).若生产一件产品
的直径位于区间
内该厂可获利分别为10,30,20,10(单位:元),现从该厂生产的产品
中随机抽取200件测量它们的直径,得到如图所示的频率分布直方图.
![]()
(1)求
的值,并估计该厂生产一件
产品的平均利润;
(2)现用分层抽样法从直径位于区间
内的产品中随机抽取一个容量为5的样本,从样本中随机抽取两件产品进行检测,求两件产品中至多有一件产品的直径位于区间
内的槪率.
查看答案和解析>>
科目: 来源: 题型:
【题目】在一项自“一带一路”沿线20国青年参与的评选中“高铁”、“支付宝”、“共享单车”和“网购”被称作中国“新四大发明”,曾以古代“四大发明”推动世界进步的中国,正再次以科技创新向世界展示自己的发展理念.某班假期分为四个社会实践活动小组,分别对“新四大发明”对人们生活的影响进行调查.于开学进行交流报告会.四个小组随机排序,则“支付宝”小组和“网购”小组不相邻的概率为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】设数集
由实数构成,且满足:若
(
且
),则
.
(1)若
,试证明
中还有另外两个元素;
(2)集合
是否为双元素集合,并说明理由;
(3)若
中元素个数不超过8个,所有元素的和为
,且
中有一个元素的平方等于所有元素的积,求集合
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com