科目: 来源: 题型:
【题目】已知椭圆及点,若直线与椭圆交于点,且( 为坐标原点),椭圆的离心率为.
(1)求椭圆的标准方程;
(2)若斜率为的直线交椭圆于不同的两点,求面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某学校为调查高三年级学生的身高情况,按随机抽样的方法抽取100名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在的男生人数有16人.
(1)试问在抽取的学生中,男,女生各有多少人?
(2)根据频率分布直方图,完成下列的列联表,并判断能有多大(百分之几)的把握认为“身高与性别有关”?
总计 | |||
男生身高 | |||
女生身高 | |||
总计 |
(3)在上述100名学生中,从身高在之间的男生和身高在之间的女生中间按男、女性别分层抽样的方法,抽出6人,从这6人中选派2人当旗手,求2人中恰好有一名女生的概率.
参考公式:
参考数据:
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆:的离心率为,椭圆:经过点.
(1)求椭圆的标准方程;
(2)设点是椭圆上的任意一点,射线与椭圆交于点,过点的直线与椭圆有且只有一个公共点,直线与椭圆交于,两个相异点,证明:面积为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】若函数满足:对任意实数以及定义中任意两数、(),恒有,则称是下凸函数.
(1)证明:函数是下凸函数;
(2)判断是不是下凸函数,并说明理由;
(3)若是定义在上的下凸函数,常数,满足:,,且,求证:,并求在上的解析式.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列中,,且点()在直线上.
(1)求数列的通项公式;
(2)对任意的,将数列落入区间内的项的个数记为,求的通项公式;
(3)对于(2)中,记,数列前项和为,求使等式成立的所有正整数、的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com