科目: 来源: 题型:
【题目】如图所示,
是边长
,
的矩形硬纸片,在硬纸片的四角切去边长相等的小正方形后,再沿虚线折起,做成一个无盖的长方体盒子,
、
是
上被切去的小正方形的两个顶点,设
.
![]()
![]()
(1)将长方体盒子体积
表示成
的函数关系式,并求其定义域;
(2)当
为何值时,此长方体盒子体积
最大?并求出最大体积.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),以原点
为极点,以
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的普通方程与曲线
的直角坐标方程;
(2)设
为曲线
上位于第一,二象限的两个动点,且
,射线
交曲线
分别于
,求
面积的最小值,并求此时四边形
的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,又称“赵爽弦图”(以弦为边长得到的正方形是由
个全等的直角三角形再加上中间的一个小正方形组成的,如图(1)),类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由
个全等的三角形与中间的一个小正六边形组成的一个大正六边形,设
,若在大正六边形中随机取一点,则此点取自小正六边形的概率为( )
![]()
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的左、右焦点分别是
,
,
,
是其左右顶点,点
是椭圆
上任一点,且
的周长为6,若
面积的最大值为
.
(1)求椭圆
的方程;
(2)若过点
且斜率不为0的直线交椭圆
于
,
两个不同点,证明:直线
与
的交点在一条定直线上.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知集合![]()
,对于
,
,定义A与B的差为
;A与B之间的距离为
.
(I)若
,试写出所有可能的A,B;
(II)
,证明:
(i)
;
(ii)![]()
![]()
三个数中至少有一个是偶数;
(III)设
,
中有m(
,且为奇数)个元素,记P中所有两元素间距离的平均值为
,证明:
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
.
(1)若曲线
在
处的切线与
轴平行,求
;
(2)已知
在
上的最大值不小于
,求
的取值范围;
(3)写出
所有可能的零点个数及相应的
的取值范围.(请直接写出结论)
查看答案和解析>>
科目: 来源: 题型:
【题目】对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表和频率分布直方图.
分组 | 频数 | 频率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30] | 2 | 0.05 |
合计 | M | 1 |
![]()
(1)求出表中M,p及图中a的值;
(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;
(3)估计这次学生参加社区服务人数的众数、中位数以及平均数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com