相关习题
 0  264454  264462  264468  264472  264478  264480  264484  264490  264492  264498  264504  264508  264510  264514  264520  264522  264528  264532  264534  264538  264540  264544  264546  264548  264549  264550  264552  264553  264554  264556  264558  264562  264564  264568  264570  264574  264580  264582  264588  264592  264594  264598  264604  264610  264612  264618  264622  264624  264630  264634  264640  264648  266669 

科目: 来源: 题型:

【题目】已知函数.

1)若上存在极大值,求的取值范围;

2)若轴是曲线的一条切线,证明:当时,.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了解某中学学生对《中华人民共和国交通安全法》的了解情况,调查部门在该校进行了一次问卷调查(共12道题),从该校学生中随机抽取40人,统计了每人答对的题数,将统计结果分成六组,得到如下频率分布直方图.

1)若答对一题得10分,未答对不得分,估计这40人的成绩的平均分(同一组中的数据用该组区间的中点值作代表);

2)若从答对题数在内的学生中随机抽取2人,求恰有1人答对题数在内的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程与曲线的直角坐标方程;

2)设为曲线上位于第一,二象限的两个动点,且,射线交曲线分别于,求面积的最小值,并求此时四边形的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知倾斜角为的直线经过抛物线的焦点,与抛物线相交于两点,且.

1)求抛物线的方程;

2)求过点且与抛物线的准线相切的圆的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出停课不停学的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不足120分的占,统计成绩后得到如下列联表:

分数不少于120

分数不足120

合计

线上学习时间不少于5小时

4

19

线上学习时间不足5小时

合计

45

1)请完成上面列联表;并判断是否有99%的把握认为高三学生的数学成绩与学生线上学习时间有关

2)在上述样本中从分数不少于120分的学生中,按照分层抽样的方法,抽到线上学习时间不少于5小时和线上学习时间不足5小时的学生共5名,若在这5名学生中随机抽取2人,求至少1人每周线上学习时间不足5小时的概率.

(下面的临界值表供参考)

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式 其中

查看答案和解析>>

科目: 来源: 题型:

【题目】赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为《周碑算经》一书作序时,介绍了勾股圆方图,又称赵爽弦图(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的,如图(1)),类比赵爽弦图,可类似地构造如图(2)所示的图形,它是由3个全等的三角形与中间的一个小正三角形组成的一个大正三角形,设,若在大正三角形中随机取一点,则此点取自小正三角形的概率为(

A.B.

C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】党的十九大明确把精准脱贫作为决胜全面建成小康社会必须打好的三大攻坚战之一.为坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村脱贫,坚持扶贫同扶智相结合,此帮扶单位考察了甲、乙两种不同的农产品加工生产方式,现对两种生产方式的产品质量进行对比,其质量按测试指标可划分为:指标在区间的为优等品;指标在区间的为合格品,现分别从甲、乙两种不同加工方式生产的农产品中,各自随机抽取100件作为样本进行检测,测试指标结果的频数分布表如下:

甲种生产方式:

指标区间

频数

5

15

20

30

15

15

乙种生产方式:

指标区间

频数

5

15

20

30

20

10

(1)在用甲种方式生产的产品中,按合格品与优等品用分层抽样方式,随机抽出5件产品,①求这5件产品中,优等品和合格品各多少件;②再从这5件产品中,随机抽出2件,求这2件中恰有1件是优等品的概率;

(2)所加工生产的农产品,若是优等品每件可售55元,若是合格品每件可售25元.甲种生产方式每生产一件产品的成本为15元,乙种生产方式每生产一件产品的成本为20元.用样本估计总体比较在甲、乙两种不同生产方式下,该扶贫单位要选择哪种生产方式来帮助该扶贫村来脱贫?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知等腰梯形中(如图1),为线段的中点,为线段上的点,,现将四边形沿折起(如图2

1)求证:平面

2)在图2中,若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆的半径为3,圆心在轴正半轴上,直线与圆相切.

(1)求圆的标准方程;

(2)过点的直线与圆交于不同的两点而且满足求直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直三棱柱中,,底面三边长分别为357是上底面所在平面内的动点,若三棱锥的外接球表面积为,则满足题意的动点的轨迹对应图形的面积为________.

查看答案和解析>>

同步练习册答案