科目: 来源: 题型:
【题目】函数
有极值,且导函数
的极值点是
的零点.(极值点是指函数取极值时对应的自变量的值)
(1)求
关于
的函数关系式,并写出定义域;
(2)若
,
这两个函数的所有极值之和不小于
,求实数
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数f(x)=ax2–a–lnx,g(x)=
,其中a∈R,e=2.718…为自然对数的底数.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)证明:当x>1时,g(x)>0;
(Ⅲ)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点
到抛物线C:y2=2px
准线的距离为2.
(Ⅰ)求C的方程及焦点F的坐标;
(Ⅱ)设点P关于原点O的对称点为点Q,过点Q作不经过点O的直线与C交于两点A,B,直线PA,PB,分别交x轴于M,N两点,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示的几何体中,
垂直于梯形
所在的平面,
为
的中点,
,四边形
为矩形,线段
交
于点
.
![]()
(1)求证:
平面
;
(2)求二面角
的正弦值;
(3)在线段
上是否存在一点
,使得
与平面
所成角的大小为
?若存在,求出
的长;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=
若不建隔热层,每年能源消耗费用为8万元。设f(x)为隔热层建造费用与20年的能源消耗费用之和。
(Ⅰ)求k的值及f(x)的表达式。
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。
查看答案和解析>>
科目: 来源: 题型:
【题目】已知i为虚数单位,下列说法中正确的是( )
A.若复数z满足
,则复数z对应的点在以
为圆心,
为半径的圆上
B.若复数z满足
,则复数![]()
C.复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模
D.复数
对应的向量为
,复数
对应的向量为
,若
,则![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】(多选)已知函数
,其中正确结论的是( )
A.当
时,函数
有最大值.
B.对于任意的
,函数
一定存在最小值.
C.对于任意的
,函数
是
上的增函数.
D.对于任意的
,都有函数
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com