科目: 来源: 题型:
【题目】如图,在四棱锥中,底面是直角梯形,侧棱底面, 垂直于和,为棱上的点,,.
(1)若为棱的中点,求证://平面;
(2)当时,求平面与平面所成的锐二面角的余弦值;
(3)在第(2)问条件下,设点是线段上的动点,与平面所成的角为,求当取最大值时点的位置.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的离心率为,焦距为.斜率为k的直线l与椭圆M有两个不同的交点A,B.
(Ⅰ)求椭圆M的方程;
(Ⅱ)若,求 的最大值;
(Ⅲ)设,直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点 共线,求k.
查看答案和解析>>
科目: 来源: 题型:
【题目】某工厂家具车间造A、B型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A、B型桌子分别需要1小时和2小时,漆工油漆一张A、B型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A、B型桌子分别获利润2千元和3千元,试问工厂每天应生产A、B型桌子各多少张,才能获得利润最大?
查看答案和解析>>
科目: 来源: 题型:
【题目】《九章算术》是中国古代的数学专著,其中的“更相减损术”原文是:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也以等数约之”即(如果需要对分数进行约分,那么)可以折半的话,就折半(也就是用2来约分).如果不可以折半的话,那么就比较分母和分子的大小,用大数减去小数,互相减来减去,一直到减数与差相等为止,用这个相等的数字来约分.如图是“更相减损术”的程序框图,如果输入,,则输出的值是( )
A.72B.70C.34D.36
查看答案和解析>>
科目: 来源: 题型:
【题目】定义为个正数、、、的“均倒数”.已知正项数列的前项的“均倒数”为.
(1)求数列的通项公式;
(2)设数列的前项和为,若对一切恒成立,试求实数的取值范围;
(3)令,问:是否存在正整数使得对一切恒成立,如存在,求出值,否则说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知椭圆的一个顶点为,离心率为.
(1)求椭圆的方程;
(2)若直线与椭园C交于,两点,直线与线的斜率之积为,证明:直线过定点,并求的面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com