科目: 来源: 题型:
【题目】已知椭圆
:
(
)的离心率
,以上顶点和右焦点为直径端点的圆与直线
相切.
(1)求椭圆
的标准方程.
(2)是否存在斜率为2的直线,使得当直线与椭圆
有两个不同的交点
,
时,能在直线
上找到一点
,在椭圆
上找到一点
,满足
?若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】近期,西安公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,
表示活动推出的天数,
表示每天使用扫码支付的人次(单位:十人次),统计数据如表下所示:
![]()
根据以上数据,绘制了散点图.
![]()
(1)根据散点图判断,在推广期内,
与
(
均为大于零的常数),哪一个适宜作为扫码支付的人次
关于活动推出天数
的回归方程类型?(给出判断即可,不必说明理由);
(2)根据(1)的判断结果及表1中的数据,建立
与
的回归方程,并预测活动推出第8天使用扫码支付的人次;
(3)推广期结束后,车队对乘客的支付方式进行统计,结果如下表:
![]()
西安公交六公司车队为缓解周边居民出行压力,以
万元的单价购进了一批新车,根据以往的经验可知,每辆车每个月的运营成本约为
万元.已知该线路公交车票价为
元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受
折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客中有
的概率享受
折优惠,有
的概率享受
折优惠,有
的概率享受
折优惠.预计该车队每辆车每个月有
万人次乘车,根据所给数据以事件发生的频率作为相应事件发生的概率,在不考虑其它因素的条件下,按照上述收费标准,假设这批车需要
(
)年才能开始盈利,求
的值.
参考数据:
|
|
|
|
|
|
|
|
|
|
其中其中
,
,
参考公式:对于一组数据
,
,
,
,其回归直线
的斜率和截距的最小二乘估计公式分别为:
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,四边形
为直角梯形,
,
,
,
,
为
上一点,
为
的中点,且
,
,现将梯形沿
折叠(如图2),使平面
平面
.
![]()
(1)求证:平面![]()
平面
.
(2)能否在边
上找到一点
(端点除外)使平面
与平面
所成角的余弦值为
?若存在,试确定点
的位置,若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线y2=2px(p>0)上点M(3,m)到焦点F的距离为4.
(Ⅰ)求抛物线方程;
(Ⅱ)点P为准线上任意一点,AB为抛物线上过焦点的任意一条弦,设直线PA,PB,PF的斜率为k1,k2,k3,问是否存在实数λ,使得k1+k2=λk3恒成立.若存在,请求出λ的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知定义在R上的函数
满足以下三个条件:①对于任意的
,都有
;②对于任意的
都有
③函数
的图象关于y轴对称,则下列结论中正确的是( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】南充高中扎实推进阳光体育运动,积极引导学生走向操场,走进大自然,参加体育锻炼,每天上午第三节课后全校大课间活动时长35分钟.现为了了解学生的体育锻炼时间,采用简单随机抽样法抽取了100名学生,对其平均每日参加体育锻炼的时间(单位:分钟)进行调查,按平均每日体育锻炼时间分组统计如下表:
分组 |
|
|
|
|
|
|
男生人数 | 2 | 16 | 19 | 18 | 5 | 3 |
女生人数 | 3 | 20 | 10 | 2 | 1 | 1 |
若将平均每日参加体育锻炼的时间不低于120分钟的学生称为“锻炼达人”.
(1)将频率视为概率,估计我校7000名学生中“锻炼达人”有多少?
(2)从这100名学生的“锻炼达人”中按性别分层抽取5人参加某项体育活动.
①求男生和女生各抽取了多少人;
②若从这5人中随机抽取2人作为组长候选人,求抽取的2人中男生和女生各1人的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com