相关习题
 0  264641  264649  264655  264659  264665  264667  264671  264677  264679  264685  264691  264695  264697  264701  264707  264709  264715  264719  264721  264725  264727  264731  264733  264735  264736  264737  264739  264740  264741  264743  264745  264749  264751  264755  264757  264761  264767  264769  264775  264779  264781  264785  264791  264797  264799  264805  264809  264811  264817  264821  264827  264835  266669 

科目: 来源: 题型:

【题目】1)直线在矩阵所对应的变换下得到直线,求的方程.

2)已知点是曲线为参数,)上一点,为坐标原点直线的倾斜角为,求点的坐标.

3)求不等式的解集.

查看答案和解析>>

科目: 来源: 题型:

【题目】在无穷数列中,,记项中的最大项为,最小项为,令.

1)若的前项和满足.

①求

②是否存在正整数满足?若存在,请求出这样的,若不存在,请说明理由.

2)若数列是等比数列,求证:数列是等比数列.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数为自然对数的底数,.

1)当时,求函数的图象在处的切线方程;

2)若函数在区间上具有单调性,求的取值范围;

3)若函数有且仅有个不同的零点,且,求证:.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,椭圆经过点,且点与椭圆的左、右顶点连线的斜率之积为.

1)求椭圆的方程;

2)若椭圆上存在两点,使得的垂心(三角形三条高的交点)恰为坐标原点,试求直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数有两个零点.

1)求的取值范围;

2)设的两个零点,证明:

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,某人承包了一块矩形土地用来种植草莓,其中mm.现规划建造如图所示的半圆柱型塑料薄膜大棚个,每个半圆柱型大棚的两半圆形底面与侧面都需蒙上塑料薄膜(接头处忽略不计),塑料薄膜的价格为每平方米元;另外,还需在每个大棚之间留下m宽的空地用于建造排水沟与行走小路(如图中m),这部分建设造价为每平方米.

1)当时,求蒙一个大棚所需塑料薄膜的面积;(本小题结果保留

2)试确定大棚的个数,使得上述两项费用的和最低?(本小题计算中

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,曲线在点处的切线方程为.

(1)求函数的解析式,并证明:.

(2)已知,且函数与函数的图象交于两点,且线段的中点为,证明:.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率为,焦距为.

(1)求的方程;

(2)若斜率为的直线与椭圆交于两点(点均在第一象限),为坐标原点.

①证明:直线的斜率依次成等比数列.

②若关于轴对称,证明:.

查看答案和解析>>

科目: 来源: 题型:

【题目】某工厂预购软件服务,有如下两种方案:

方案一:软件服务公司每日收取工厂60元,对于提供的软件服务每次10元;

方案二:软件服务公司每日收取工厂200元,若每日软件服务不超过15次,不另外收费,若超过15次,超过部分的软件服务每次收费标准为20元.

(1)设日收费为元,每天软件服务的次数为,试写出两种方案中的函数关系式;

(2)该工厂对过去100天的软件服务的次数进行了统计,得到如图所示的条形图,依据该统计数据,把频率视为概率,从节约成本的角度考虑,从两个方案中选择一个,哪个方案更合适?请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长,面积已经圆周率的基础,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为(参考数据:

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

同步练习册答案