相关习题
 0  264741  264749  264755  264759  264765  264767  264771  264777  264779  264785  264791  264795  264797  264801  264807  264809  264815  264819  264821  264825  264827  264831  264833  264835  264836  264837  264839  264840  264841  264843  264845  264849  264851  264855  264857  264861  264867  264869  264875  264879  264881  264885  264891  264897  264899  264905  264909  264911  264917  264921  264927  264935  266669 

科目: 来源: 题型:

【题目】如图,矩形中,的中点,点分别在线段上运动(其中不与重合,不与重合),且,沿折起,得到三棱锥,则三棱锥体积的最大值为______;当三棱锥体积最大时,其外接球的半径______.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,四边形是直角梯形,底面的中点.

1)求证:

2)若二面角的余弦值为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】冠状病毒是一个大型病毒家族,已知可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.而今年出现在湖北武汉的新型冠状病毒(nCoV)是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等,在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.医院为筛查冠状病毒,需要检验血液是否为阳性,现有份血液样本,有以下两种检验方式:

方式一:逐份检验,则需要检验.

方式二:混合检验,将其中)份血液样本分别取样混合在一起检验.

若检验结果为阴性,这份的血液全为阴性,因而这份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这份血液究竟哪几份为阳性,就要对这份再逐份检验,此时这份血液的检验次数总共为.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为.

1)现有份血液样本,其中只有份样本为阳性,若采用逐份检验方式,求恰好经次检验就能把阳性样本全部检验出来的概率.

2)现取其中)份血液样本,记采用逐份检验方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次为.

i)若,试求关于的函数关系式

ii)若,且采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求的最大值.

参考数据:.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为为实数).

1)求曲线的普通方程与曲线的直角坐标方程;

2)当时,设分别为曲线和曲线上的动点,求的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,其中.

1)求函数的极值;

2)若函数有两个不同的零点求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过.已知一等奖和二等奖奖品的单价分别为元、元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖的人数不能少于人,那么下列说法中错误的是(

A.最多可以购买份一等奖奖品

B.最多可以购买份二等奖奖品

C.购买奖品至少要花费

D.共有种不同的购买奖品方案

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=xlnx,g(x)=,

(1)求f(x)的最小值;

(2)对任意都有恒成立,求实数a的取值范围;

(3)证明:对一切,都有成立.

查看答案和解析>>

科目: 来源: 题型:

【题目】在如图所示的四棱锥中,四边形是等腰梯形,平面.

1)求证:平面

2)已知二面角的余弦值为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)ax2(a2b)xaln x(abR)

()b1求函数f(x)的单调区间;

()a=-1b0证明:f(x)ex>x2x1(其中e为自然对数的底数)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率为,以原点为圆心,椭圆的长半轴为半径的圆与直线相切.

1)求椭圆的标准方程;

2)已知点为动直线与椭圆的两个交点,问:在轴上是否存在点,使为定值?若存在,试求出点的坐标和定值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案