科目: 来源: 题型:
【题目】如图,矩形
中,
,
,
为
的中点,点
,
分别在线段
,
上运动(其中
不与
,
重合,
不与
,
重合),且
,沿
将
折起,得到三棱锥
,则三棱锥
体积的最大值为______;当三棱锥
体积最大时,其外接球的半径
______.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】冠状病毒是一个大型病毒家族,已知可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.而今年出现在湖北武汉的新型冠状病毒(nCoV)是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等,在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.医院为筛查冠状病毒,需要检验血液是否为阳性,现有
份血液样本,有以下两种检验方式:
方式一:逐份检验,则需要检验
次.
方式二:混合检验,将其中
(
且
)份血液样本分别取样混合在一起检验.
若检验结果为阴性,这
份的血液全为阴性,因而这
份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这
份血液究竟哪几份为阳性,就要对这
份再逐份检验,此时这
份血液的检验次数总共为
.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为
.
(1)现有
份血液样本,其中只有
份样本为阳性,若采用逐份检验方式,求恰好经
次检验就能把阳性样本全部检验出来的概率.
(2)现取其中
(
且
)份血液样本,记采用逐份检验方式,样本需要检验的总次数为
,采用混合检验方式,样本需要检验的总次为
.
(i)若
,试求
关于
的函数关系式
;
(ii)若
,且采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求
的最大值.
参考数据:
,
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,曲线
的参数方程为
(
为参数),以原点
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
(
为实数).
(1)求曲线
的普通方程与曲线
的直角坐标方程;
(2)当
时,设
、
分别为曲线
和曲线
上的动点,求
的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过
元.已知一等奖和二等奖奖品的单价分别为
元、
元,一等奖人数与二等奖人数的比值不得高于
,且获得一等奖的人数不能少于
人,那么下列说法中错误的是( )
A.最多可以购买
份一等奖奖品
B.最多可以购买
份二等奖奖品
C.购买奖品至少要花费
元
D.共有
种不同的购买奖品方案
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=
ax2-(a2+b)x+aln x(a,b∈R).
(Ⅰ)当b=1时,求函数f(x)的单调区间;
(Ⅱ)当a=-1,b=0时,证明:f(x)+ex>-
x2-x+1(其中e为自然对数的底数)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
:
的离心率为
,以原点
为圆心,椭圆
的长半轴为半径的圆与直线
相切.
(1)求椭圆
的标准方程;
(2)已知点
,
为动直线
与椭圆
的两个交点,问:在
轴上是否存在点
,使
为定值?若存在,试求出点
的坐标和定值,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com