科目: 来源: 题型:
【题目】我国古代有着辉煌的数学研究成果,《周牌算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》等10部专著是了解我国古代数学的重要文献.这10部专著中有5部产生于魏晋南北朝时期.某中学拟从这10部专著中选择2部作为“数学文化”课外阅读教材则所选2部专著中至少有一部是魏晋南北朝时期的专著的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,曲线的极坐标方程为
,以极点为原点,极轴为
轴的非负半轴建立平面直角坐标系,直线
的参数方程为
(
为参数,
).
(1)求曲线
的直角坐标方程和直线
的普通方程;
(2)若曲线
上的动点
到直线
的最大距离为
,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】冠状病毒是一个大型病毒家族,已知可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.而今年出现在湖北武汉的新型冠状病毒(nCoV)是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状发热咳嗽气促和呼吸困难等.在较严重病例中,感染可导致肺炎严重急性呼吸综合征肾衰竭,甚至死亡.某医院为筛查冠状病毒,需要检验血液是否为阳性,现有
份血液样本,有以下两种检验方式:
方式一:逐份检验,则需要检验n次.
方式二:混合检验,将其中
且k≥2)份血液样本分别取样混合在一起检验.若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为k+1.
假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p(0<p<1).现取其中
且k≥2)份血液样本,记采用逐份检验,方式,样本需要检验的总次数为
,采用混合检验方式,样本需要检验的总次数为
.
(1)若
,试求p关于k的函数关系式p=f(k).
(2)若p与干扰素计量
相关,其中
2)是不同的正实数,满足x1=1且
.
(i)求证:数列
为等比数列;
(ii)当
时采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数的期望值更少,求k的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】过抛物线
的焦点F且倾斜角为
的直线交抛物线于AB两点,交其准线于点C,且|AF|=|FC|,|BC|=2.
(1)求抛物线C的方程;
(2)直线l交抛物线C于DE两点,且这两点位于x轴两侧,与x轴交于点M,若
·
求
的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】中国古代儒家要求学生掌握六种基本才能:礼乐射御书数,某校国学社团周末开展“六艺”课程讲座活动,每天连排六节,每艺一节,排课有如下要求:“礼”和“数”不能相邻,“射”和“乐”必须相邻,则“六艺”课程讲座不同的排课顺序共有( )
A.24种B.72种C.96种D.144种
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,椭圆
的右顶点为
,左、右焦点分别为
、
,过点
且斜率为
的直线与
轴交于点
,与椭圆
交于另一个点
,且点
在
轴上的射影恰好为点
.
![]()
(1)求点
的坐标;
(2)过点
且斜率大于
的直线与椭圆交于
两点
,若
,求实数
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】某城市对一项惠民市政工程满意程度(分值:
分)进行网上调查,有2000位市民参加了投票,经统计,得到如下频率分布直方图(部分图):
![]()
现用分层抽样的方法从所有参与网上投票的市民中随机抽取
位市民召开座谈会,其中满意程度在
的有5人.
(1)求
的值,并填写下表(2000位参与投票分数和人数分布统计);
满意程度(分数) |
|
|
|
|
|
人数 |
(2)求市民投票满意程度的平均分(各分数段取中点值);
(3)若满意程度在
的5人中恰有2位为女性,座谈会将从这5位市民中任选两位发言,求男性甲或女性乙被选中的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com