科目: 来源: 题型:
【题目】过抛物线
上点
作三条斜率分别为
,
,
的直线
,
,
,与抛物线分别交于不同于
的点
.若
,
,则以下结论正确的是( )
A.直线
过定点B.直线
斜率一定
C.直线
斜率一定D.直线
斜率一定
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为:
(
为参数),以平面直角坐标系的原点
为极点,
轴的非负半轴为极轴建立极坐标系,将曲线
绕极点顺时针旋转
后得到曲线的曲线记为
.
(1)求曲线
和
的极坐标方程;
(2)设
和
的交点为
,
,求
的长度.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的离心率为
,直线
,圆
的方程为
,直线
被圆
截得的弦长与椭圆
的短轴长相等,椭圆
的左顶点为
,上顶点为
.
(1)求椭圆
的方程;
(2)已知经过点
且斜率为
直线
与椭圆
有两个不同的交点
和
,请问是否存在常数
,使得向量
与
共线?如果存在,求出
的值;如果不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】随着经济模式的改变,微商和电商已成为当今城乡一种新型的购销平台.已知经销某种商品的电商在任何一个销售季度内,每售出
吨该商品可获利润
万元,未售出的商品,每
吨亏损
万元.根据往年的销售经验,得到一个销售季度内市场需求量的频率分布直方图如图所示.已知电商为下一个销售季度筹备了
吨该商品.现以
(单位:吨,
)表示下一个销售季度的市场需求量,
(单位:万元)表示该电商下一个销售季度内经销该商品获得的利润.
![]()
(1)将
表示为
的函数,求出该函数表达式;
(2)根据直方图估计利润
不少于57万元的概率;
(3)根据频率分布直方图,估计一个销售季度内市场需求量
的平均数与中位数的大小(保留到小数点后一位).
查看答案和解析>>
科目: 来源: 题型:
【题目】下列命题中错误的是( )
A. 命题“若
,则
”的逆否命题是真命题
B. 命题“
”的否定是“
”
C. 若
为真命题,则
为真命题
D. 已知
,则“
”是“
”的必要不充分条件
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,三棱柱中
,它的体积是
底面△ABC中,∠BAC=90°,AB=4,AC=3,
在底面的射影是D,且D为BC的中点.
![]()
(1)求侧棱
与底面ABC所成角的大小;
(2)求异面直线
与
所成角的大小.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C:
经过定点
,其左右集点分别为
,
且
,过右焦
且与坐标轴不垂直的直线l与椭圈交于P,Q两点.
(1)求椭圆C的方程:
(2)若O为坐标原点,在线段
上是否存在点
,使得以
,
为邻边的平行四边形是菱形?若存在,求出m的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列
的前
项和为
,且满足
,
,设
,
.
(Ⅰ)求证:数列
是等比数列;
(Ⅱ)若
,
,求实数
的最小值;
(Ⅲ)当
时,给出一个新数列
,其中
,设这个新数列的前
项和为
,若
可以写成
(
,
且
,
)的形式,则称
为“指数型和”.问
中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知曲线
的参数方程为:
(
为参数),
的参数方程为:
(
为参数).
(1)化
、
的参数方程为普通方程,并说明它们分别表示什么曲线;
(2)若直线
的极坐标方程为:
,曲线
上的点
对应的参数
,曲线
上的点
对应的参数
,求
的中点
到直线
的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com