科目: 来源: 题型:
【题目】设集合由满足下列两个条件的数列构成:①②存在实数使得对任意正整数都成立.
(1)现在给出只有5项的有限数列试判断数列是否为集合的元素;
(2)设数列的前项和为且若对任意正整数点均在直线上,证明:数列并写出实数的取值范围;
(3)设数列若数列没有最大值,求证:数列一定是单调递增数列。
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆:的左、右点分别为点在椭圆上,且
(1)求椭圆的方程;
(2)过点(1,0)作斜率为的直线交椭圆于M、N两点,若求直线的方程;
(3)点P、Q为椭圆上的两个动点,为坐标原点,若直线的斜率之积为求证:为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥中,已知底面ABCD是矩形,PA⊥平面ABCD,AP=2,AB=2,AD=4,且E、F分别是PB、PC的中点。
(1)求三棱锥的体积;
(2)求直线EC与平面PCD所成角的大小(结果用反三角函数值表示).
查看答案和解析>>
科目: 来源: 题型:
【题目】对于实数,将满足“且为整数”的实数称为实数的小数部分,用记号表示.对于实数,无穷数列满足如下条件:,其中.
(1)若,求数列;
(2)当时,对任意的,都有,求符合要求的实数构成的集合;
(3)若是有理数,设(是整数,是正整数,互质),问对于大于的任意正整数,是否都有成立,并证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线(),过点()的直线与交于、两点.
(1)若,求证:是定值(是坐标原点);
(2)若(是确定的常数),求证:直线过定点,并求出此定点坐标;
(3)若的斜率为1,且,求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.
(I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;
(II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某厂生产某种产品的年固定成本为250万元,每生产千件,需另投入成本,当年产量不足80千件时,(万元);当年产量不小于80千件时,(万元),每件售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润(万元)关于年产量(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com