科目: 来源: 题型:
【题目】学校从参加高一年级期中考试的学生中抽出50名学生,并统计了她们的数学成绩(成绩均为整数且满分为150分),得到的样本频率分布表如下:
分组 | 频数 | 频率 |
| 2 | 0.04 |
| 3 | 0.06 |
| 14 | 0.28 |
| 15 | 0.30 |
|
|
|
| 4 | 0.08 |
合计 |
|
|
(1)在给出的样本频率分布表中,求
,
,
,
的值;
(2)估计成绩在120分以上(含120分)学生的比例;
(3)抽取的50名学生中,为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩在
的学生中选两位同学,共同帮助成绩在
中的某一位同学.已知甲同学的成绩为62分,乙同学的成绩为135分,求甲、乙两同学恰好被安排在同一小组的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】部分与整体以某种相似的方式呈现称为分形.谢尔宾斯基三角形是一种分形,由波兰数学家谢尔宾斯基1915年提出.具体操作是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程逐次得到各个图形,如图.
![]()
现在上述图(3)中随机选取一个点,则此点取自阴影部分的概率为_________.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
为参数),曲线
的参数方程为
(
为参数),以该直角坐标系的原点
为极点,
轴的非负半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)分别求曲线
的极坐标方程和曲线
的直角坐标方程;
(Ⅱ)设直线
交曲线
于
,
两点,交曲线
于
,
两点,求
的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线l的参数方程为
为参数), 椭圆C的参数方程为
为参数)。在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,点A的极坐标为(2, ![]()
(1)求椭圆C的直角坐标方程和点A在直角坐标系下的坐标
(2)直线l与椭圆C交于P,Q两点,求△APQ的面积
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
为参数),以原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
(Ⅰ)求曲线
的直角坐标方程,并指出其表示何种曲线;(Ⅱ)设直线
与曲线
交于
两点,若点
的直角坐标为
,试求当
时,
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某地随着经济的发展,居民收入逐年增长,如表是该地一建设银行连续五年的储蓄存款(年底余额),如表1
![]()
为了研究计算方便,工作人员将上表的数据进行了处理,令
,
得到表2:
![]()
(1)求:
关于t的线性回归方程;
(2)通过(1)中的方程,求出y关于
的回归方程;
(3)用所求回归方程预测到2019年年底,该地储蓄存款额可达多少?
附:对于线性回归方程
,其中
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,其中
为自然对数的底数,
。
(Ⅰ)若曲线
在点
处的切线与直线
平行,求
的值;
(Ⅱ)若
,问函数
有无极值点?若有,请求出极值点的个数;若没有,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com