相关习题
 0  264987  264995  265001  265005  265011  265013  265017  265023  265025  265031  265037  265041  265043  265047  265053  265055  265061  265065  265067  265071  265073  265077  265079  265081  265082  265083  265085  265086  265087  265089  265091  265095  265097  265101  265103  265107  265113  265115  265121  265125  265127  265131  265137  265143  265145  265151  265155  265157  265163  265167  265173  265181  266669 

科目: 来源: 题型:

【题目】在直角坐标系中,已知曲线为参数),曲线为参数),且,点P为曲线的公共点.

1)求动点P的轨迹方程;

2)在以原点O为极点,x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为,求动点P到直线l的距离的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线C,过点且互相垂直的两条动直线与抛物线C分别交于PQMN.

1)求四边形面积的取值范围;

2)记线段的中点分别为EF,求证:直线恒过定点.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,其中e是自然对数的底数.

1)若,证明:

2)若时,都有,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,四边形是等腰梯形,,三角形是等边三角形,平面平面EF分别为的中点.

1)求证:平面平面

2)若,求直线与平面所成角的正弦值

查看答案和解析>>

科目: 来源: 题型:

【题目】红铃虫(Pectinophora gossypiella)是棉花的主要害虫之一,其产卵数与温度有关.现收集到一只红铃虫的产卵数y(个)和温度x(℃)的8组观测数据,制成图1所示的散点图.现用两种模型①,②分别进行拟合,由此得到相应的回归方程并进行残差分析,进一步得到图2所示的残差图.

根据收集到的数据,计算得到如下值:

25

2.89

646

168

422688

48.48

70308

表中

1)根据残差图,比较模型①、②的拟合效果,应选择哪个模型?并说明理由;

2)根据(1)中所选择的模型,求出y关于x的回归方程(系数精确到0.01),并求温度为34℃时,产卵数y的预报值.

(参考数据:

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目: 来源: 题型:

【题目】某学校为了解高三年级学生在线学习情况,统计了2020218-27日(共10天)他们在线学习人数及其增长比例数据,并制成如图所示的条形图与折线图的组合图.

根据组合图判断,下列结论正确的是(

A.5天在线学习人数的方差大于后5天在线学习人数的方差

B.5天在线学习人数的增长比例的极差大于后5天的在线学习人数的增长比例的极差

C.10天学生在线学习人数的增长比例在逐日增大

D.10天学生在线学习人数在逐日增加

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xoy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线E的极坐标方程为,直线l的参数方程为(t为参数).P为曲线E上的动点,点Q为线段OP的中点.

1)求点Q的轨迹(曲线C)的直角坐标方程;

2)若直线l交曲线CAB两点,点恰好为线段AB的三等分点,求直线l的普通方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数的导函数.

1)讨论的单调性;

2)若,当时,求证:有两个零点.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知定点,动点P为平面上一个动点,且直线SPTP的斜率之积为.

1)求动点P的轨迹E的方程;

2)设点B为轨迹Ey轴正半轴的交点,是否存在斜率为直线l,使得l交轨迹EMN两点,且恰是的重心?若存在,求l的方程;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】2014年非洲爆发了埃博拉病毒疫情,在疫情结束后,当地防疫部门做了一项回访调查,得到如下结果,

患病

不患病

有良好卫生习惯

20

180

无良好卫生习惯

80

220

1)结合上面列联表,是否有的把握认为是否患病与卫生习惯有关?

2)现从有良好卫生习惯且不患病的180人中抽取5人,再从这5人中选两人给市民做健康专题报告,求至少有一人被选中的概率.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

同步练习册答案