科目: 来源: 题型:
【题目】某景区平面图如图1所示,
为边界上的点.已知边界
是一段抛物线,其余边界均为线段,且
,抛物线顶点
到
的距离
.以
所在直线为
轴,
所在直线为
轴,建立平面直角坐标系.
![]()
(1)求边界
所在抛物线的解析式;
(2)如图2,该景区管理处欲在区域
内围成一个矩形
场地,使得点
在边界
上,点
在边界
上,试确定点
的位置,使得矩形
的周长最大,并求出最大周长.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数).以坐标原点为极点,
轴的非负半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)将
的方程化为普通方程,将
的方程化为直角坐标方程;
(2)已知直线
的参数方程为
(
,
为参数,且
),
与
交于点
,
与
交于点
,且
,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】设抛物线
的焦点为
,准线为
,
为过焦点
且垂直于
轴的抛物线
的弦,已知以
为直径的圆经过点
.
(1)求
的值及该圆的方程;
(2)设
为
上任意一点,过点
作
的切线,切点为
,证明:
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知某企业近3年的前7个月的月利润(单位:百万元)如下面的折线图所示:
![]()
(1)试问这3年的前7个月中哪个月的月平均利润最高?
(2)通过计算判断这3年的前7个月的总利润的发展趋势;
(3)试以第3年的前4个月的数据(如下表),用线性回归的拟合模式估测第3年8月份的利润.
月份x | 1 | 2 | 3 | 4 |
利润y(单位:百万元) | 4 | 4 | 6 | 6 |
相关公式:
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】椭圆
的离心率是
,过点
做斜率为
的直线
,椭圆
与直线
交于
两点,当直线
垂直于
轴时
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)当
变化时,在
轴上是否存在点
,使得
是以
为底的等腰三角形,若存在求出
的取值范围,若不存在说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成.每件产品的非原料成本
(元)与生产该产品的数量
(千件)有关,经统计得到如下数据:
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
y | 112 | 61 | 44.5 | 35 | 30.5 | 28 | 25 | 24 |
根据以上数据,绘制了散点图.观察散点图,两个变量不具有线性相关关系,现考虑用反比例函数模型
和指数函数模型
分别对两个变量的关系进行拟合,已求得:用指数函数模型拟合的回归方程为
,
与
的相关系数
;
,
,
,
,
,
,(其中
);
![]()
(1)用反比例函数模型求
关于
的回归方程;
(2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到0.01),并用其估计产量为10千件时每件产品的非原料成本.
参考数据:
,![]()
参考公式:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
,相关系数
.
查看答案和解析>>
科目: 来源: 题型:
【题目】我们听到的美妙弦乐,不是一个音在响,而是许多个纯音的合成,称为复合音.复合音的响度是各个纯音响度之和.琴弦在全段振动,产生频率为
的纯音的同时,其二分之一部分也在振动,振幅为全段的
,频率为全段的2倍;其三分之一部分也在振动,振幅为全段的
,频率为全段的3倍;其四分之一部分也在振动,振幅为全段的
,频率为全段的4倍;之后部分均忽略不计.已知全段纯音响度的数学模型是函数
(
为时间,
为响度),则复合音响度数学模型的最小正周期是_____________.
查看答案和解析>>
科目: 来源: 题型:
【题目】数学中有许多形状优美、寓意美好的曲线,曲线C:
就是其中之一(如图).给出下列三个结论:
![]()
①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);
②曲线C上任意一点到原点的距离都不超过
;
③曲线C所围成的“心形”区域的面积小于3.
其中,所有正确结论的序号是
A. ①B. ②C. ①②D. ①②③
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com