相关习题
 0  265142  265150  265156  265160  265166  265168  265172  265178  265180  265186  265192  265196  265198  265202  265208  265210  265216  265220  265222  265226  265228  265232  265234  265236  265237  265238  265240  265241  265242  265244  265246  265250  265252  265256  265258  265262  265268  265270  265276  265280  265282  265286  265292  265298  265300  265306  265310  265312  265318  265322  265328  265336  266669 

科目: 来源: 题型:

【题目】已知函数.

1)求的极大值点;

2)当时,若过点存在3条直线与曲线相切,求t的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】2020年是我国垃圾分类逐步凸显效果关键的一年.在国家高度重视,重拳出击的前提下,高强度、高频率的宣传教育能有效缩短我国生活垃圾分类走入世界前列所需的时间,打好垃圾分类这场持久战全民战”.某市做了一项调查,在一所城市中学和一所县城中学随机各抽取15名学生,对垃圾分类知识进行问答,满分为100分,他们所得成绩如下:

城市中学学生成绩分别为:73 71 83 86 92 70 88 93 73 97 87 88 74 86 85

县城中学学生成绩分别为:60 64 71 91 60 76 72 85 81 72 62 74 73 63 72

1)根据上述两组数据在图中完成两所中学学生成绩的茎叶图,并通过茎叶图比较两所中学学生成绩的平均分及分散程度;(不要求计算出具体值,给出结论即可)

2)记这30名学生成绩80分以上为良好,80分以下为一般,完善表格,并判断是否有99%的把握认为该城市中学和县城中学的学生在了解垃圾分类知识上有差异?(结果保留三位小数)

学生成绩

良好

一般

合计

城市中学学生

县城中学学生

合计

附:.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在正方体中,PQMNHR是各条棱的中点.

①直线平面;②;③PQHR四点共面;④平面.其中正确的个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,曲线α为参数)经过伸缩变换得到曲线,在以坐标原点为极点,x轴的正半轴为极轴的极坐标系中,直线l的极坐标方程为.

1)求曲线的普通方程;

2)设点P是曲线上的动点,求点P到直线l距离d的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆E,过右焦点F的直线l与椭圆E交于AB两点(AB两点不在x轴上),椭圆EAB两点处的切线交于P,点P在定直线.

1)记点,求过点与椭圆E相切的直线方程;

2)以为直径的圆过点F,求面积的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)求的极大值点;

2)当时,若过点存在3条直线与曲线相切,求t的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在等腰梯形中,EF分别为边的中点.现将沿着折叠到的位置,使得平面平面.

1)证明:平面平面

2)求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】2020年是我国垃圾分类逐步凸显效果关键的一年.在国家高度重视,重拳出击的前提下,高强度、高频率的宣传教育能有效缩短我国生活垃圾分类走入世界前列所需的时间,打好垃圾分类这场持久战全民战”.某市做了一项调查,在一所城市中学和一所县城中学随机各抽取15名学生,对垃圾分类知识进行问答,满分为100分,他们所得成绩如下:

城市中学学生成绩分别为:73 71 83 86 92 70 88 93 73 97 87 88 74 86 85

县城中学学生成绩分别为:60 64 71 91 60 76 72 85 81 72 62 74 73 63 72

1)根据上述两组数据在图中完成两所中学学生成绩的茎叶图,并通过茎叶图比较两所中学学生成绩的平均分及分散程度;(不要求计算出具体值,给出结论即可)

2)从城市中学成绩在80分以上的学生中抽取4名,记这4名学生的成绩在90分以上的人数为X,求X的分布列与数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在正方体中,PQMNHR是各条棱的中点.

①直线平面;②;③PQHR四点共面;④平面.其中正确的个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数fx)=|x+1||2x2|的最大值为M,正实数ab满足a+bM

1)求2a2+b2的最小值;

2)求证:aabbab

查看答案和解析>>

同步练习册答案