科目: 来源: 题型:
【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、
后从事互联网行业者岗位分布条形图,则下列结论中不一定正确的是( )
![]()
A. 互联网行业从业人员中
后占一半以上
B. 互联网行业中从事技术岗位的人数超过总人数的![]()
C. 互联网行业中从事运营岗位的人数
后比
前多
D. 互联网行业中从事运营岗位的人数
后比
后多
查看答案和解析>>
科目: 来源: 题型:
【题目】对于函数
,若在定义域内存在实数
,满足
,则称
为“
类函数”.
(1)已知函数
,试判断
是否为“
类函数”?并说明理由;
(2)设
是定义在
上的“
类函数”,求是实数
的最小值;
(3)若
为其定义域上的“
类函数”,求实数
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
文艺节目 | 新闻节目 | 总计 | |
20至40岁 | 30 | 18 | 48 |
大于40岁 | 20 | 32 | 52 |
总计 | 50 | 50 | 100 |
(1)用分层抽样方法在收看文艺节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?
(2)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为大于40岁的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,在长方体
中,
,点E是棱
上的一个动点,若平面
交棱
于点
,给出下列命题:
![]()
①四棱锥
的体积恒为定值;
②存在点
,使得
平面
;
③对于棱
上任意一点
,在棱
上均有相应的点
,使得
平面
;
④存在唯一的点
,使得截面四边形
的周长取得最小值.
其中真命题的是____________.(填写所有正确答案的序号)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥
中,侧棱
底面
,底面
是直角梯形,
∥
,
,且
,
,
是棱
的中点 .
![]()
(Ⅰ)求证:
∥平面
;
(Ⅱ)求平面
与平面
所成锐二面角的余弦值;
(Ⅲ)设点
是线段
上的动点,
与平面
所成的角为
,求
的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知四边形
为矩形,
,
为
的中点,将
沿
折起,得到四棱锥
,设
的中点为
,在翻折过程中,得到如下有三个命题:
①
平面
,且
的长度为定值
;
②三棱锥
的最大体积为
;
③在翻折过程中,存在某个位置,使得
.
其中正确命题的序号为__________.(写出所有正确结论的序号)
查看答案和解析>>
科目: 来源: 题型:
【题目】如果存在常数
,使得数列
满足:若
是数列
中的一项,则
也是数列
中的一项,称数列
为“兑换数列”,常数
是它的“兑换系数”.
(1)若数列:![]()
是“兑换系数”为
的“兑换数列”,求
和
的值;
(2)已知有穷等差数列
的项数是![]()
,所有项之和是
,求证:数列
是“兑换数列”,并用
和
表示它的“兑换系数”;
(3)对于一个不小于3项,且各项皆为正整数的递增数列
,是否有可能它既是等比数列,又是“兑换数列”?给出你的结论,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点
、
为双曲线![]()
的左、右焦点,过
作垂直于
轴的直线,在
轴上方交双曲线
于点
,且
,圆
的方程是
.
(1)求双曲线
的方程;
(2)过双曲线
上任意一点
作该双曲线两条渐近线的垂线,垂足分别为
、
,求
的值;
(3)过圆
上任意一点
作圆
的切线
交双曲线
于
、
两点,
中点为
,求证:![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com