科目: 来源: 题型:
【题目】如图,
为信号源点,
、
、
是三个居民区,已知
、
都在
的正东方向上,
,
,
在
的北偏西45°方向上,
,现要经过点
铺设一条总光缆直线
(
在直线
的上方),并从
、
、
分别铺设三条最短分支光缆连接到总光缆
,假设铺设每条分支光缆的费用与其长度的平方成正比,比例系数为1元/
,设
,(
),铺设三条分支光缆的总费用为
(元).
![]()
(1)求
关于
的函数表达式;
(2)求
的最小值及此时
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知某保险公司的某险种的基本保费为
(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数 | 0 | 1 | 2 | 3 |
|
保费(元) |
|
|
|
|
|
随机调查了该险种的400名续保人在一年内的出险情况,得到下表:
出险次数 | 0 | 1 | 2 | 3 |
|
频数 | 280 | 80 | 24 | 12 | 4 |
该保险公司这种保险的赔付规定如下:
出险序次 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次及以上 |
赔付金额(元) |
|
|
|
| 0 |
将所抽样本的频率视为概率.
(Ⅰ)求本年度续保人保费的平均值的估计值;
(Ⅱ)按保险合同规定,若续保人在本年度内出险3次,则可获得赔付
元;若续保人在本年度内出险6次,则可获得赔付
元;依此类推,求本年度续保人所获赔付金额的平均值的估计值;
(Ⅲ)续保人原定约了保险公司的销售人员在上午10:30~11:30之间上门签合同,因为续保人临时有事,外出的时间在上午10:45~11:05之间,请问续保人在离开前见到销售人员的概率是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”。“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸未,甲申、乙酉、丙戌…癸巳,…,共得到60个组合,称六十甲子,周而复始,无穷无尽。2019年是“干支纪年法”中的己亥年,那么2026年是“干支纪年法”中的
A. 甲辰年B. 乙巳年C. 丙午年D. 丁未年
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,曲线C的参数方程为
(
为参数),以平面直角坐标系的原点O为极点,x轴正半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(2)过点
,倾斜角为
的直线l与曲线C相交于M,N两点,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的离心率为
,点
在椭圆C上.
(1)求椭圆C的标准方程;
(2)若直线上
与C交于A,B两点,是否存在l,使得点
在以AB为直径的圆外.若存在,求出k的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1所示,在直角梯形DCEF中,
,
,
,
,将四边形ABEF沿AB边折成图2.
![]()
(1)求证:
平面DEF;
(2)若
,求平面DEF与平面EAC所成锐二面角的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某服装加工厂为了提高市场竞争力,对其中一台生产设备提出了甲、乙两个改进方案:甲方案是引进一台新的生产设备,需一次性投资1000万元,年生产能力为30万件;乙方案是将原来的设备进行升级改造,需一次性投入700万元,年生产能力为20万件.根据市场调查与预测,该产品的年销售量的频率分布直方图如图所示,无论是引进新生产设备还是改造原有的生产设备,设备的使用年限均为6年,该产品的销售利润为15元/件(不含一次性设备改进投资费用).
![]()
(1)根据年销售量的频率分布直方图,估算年销量的平均数
(同一组中的数据用该组区间的中点值作代表);
(2)将年销售量落入各组的频率视为概率,各组的年销售量用该组区间的中点值作年销量的估计值,并假设每年的销售量相互独立.
①根据频率分布直方图估计年销售利润不低于270万元的概率:
②若以该生产设备6年的净利润的期望值作为决策的依据,试判断该服装厂应选择哪个方案.(6年的净利润=6年销售利润-设备改进投资费用)
查看答案和解析>>
科目: 来源: 题型:
【题目】为了调查一款手机的使用时间,研究人员对该款手机进行了相应的测试,将得到的数据统计如下图所示:
![]()
并对不同年龄层的市民对这款手机的购买意愿作出调查,得到的数据如下表所示:
愿意购买该款手机 | 不愿意购买该款手机 | 总计 | |
40岁以下 | 600 | ||
40岁以上 | 800 | 1000 | |
总计 | 1200 |
(1)根据图中的数据,试估计该款手机的平均使用时间;
(2)请将表格中的数据补充完整,并根据表中数据,判断是否有99.9%的把握认为“愿意购买该款手机”与“市民的年龄”有关.
参考公式:
,其中
.
参考数据:
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com