相关习题
 0  265740  265748  265754  265758  265764  265766  265770  265776  265778  265784  265790  265794  265796  265800  265806  265808  265814  265818  265820  265824  265826  265830  265832  265834  265835  265836  265838  265839  265840  265842  265844  265848  265850  265854  265856  265860  265866  265868  265874  265878  265880  265884  265890  265896  265898  265904  265908  265910  265916  265920  265926  265934  266669 

科目: 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)当时,记在区间的最大值为,最小值为,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】四棱锥PABCD中,底面ABCD是边长为2的菱形,侧面PAD⊥底面ABCD,∠BCD60°,EBC中点,点Q在侧棱PC上.

(Ⅰ)求证:ADPB

(Ⅱ)若QPC中点,求二面角EDQC的余弦值;

(Ⅲ)是否存在Q,使PA∥平面DEQ?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重:

日均浓度

空气质量级别

一级

二级

三级

四级

五级

六级

空气质量类型

轻度污染

中度污染

重度污染

严重污染

甲、乙两城市20132月份中的15天对空气质量指数PM2.5进行监测,获得PM2.5日均浓度指数数据如茎叶图所示:

(Ⅰ)根据你所学的统计知识估计甲、乙两城市15天内哪个城市空气质量总体较好?(注:不需说明理由)

(Ⅱ)在15天内任取1天,估计甲、乙两城市空气质量类别均为优或良的概率;

(Ⅲ)在乙城市15个监测数据中任取2个,设X为空气质量类别为优或良的天数,求X的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】函数图象上不同两点处的切线的斜率分别是,规定叫曲线在点与点之间的“弯曲度”,给出以下命题:

1)函数图象上两点的横坐标分别为12,则

2)存在这样的函数,图象上任意两点之间的“弯曲度”为常数;

3)设点是抛物线,上不同的两点,则

4)设曲线上不同两点,且,若恒成立,则实数的取值范围是

以上正确命题的序号为__(写出所有正确的)

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,对于点,定义变换:将点变换为点,使得其中.这样变换就将坐标系内的曲线变换为坐标系内的曲线.则四个函数,,,在坐标系内的图象,变换为坐标系内的四条曲线(如图)依次是

A. ②,③,①,④B. ③,②,④,①C. ②,③,④,①D. ③,②,①,④

查看答案和解析>>

科目: 来源: 题型:

【题目】第七届世界军人运动会于20191018日至20191027日在中国武汉举行,第七届世界军人运动会是我国第一次承办的综合性国际军事体育赛事,也是继北京奥运会之后我国举办的规模最大的国际体育盛会.来自109个国家的9300余名军体健儿在江城武汉同场竞技、增进友谊.运动会共设置射击、游泳、田径、篮球等27个大项、329个小项.经过激烈角逐,奖牌榜的前6名如下:

某大学德语系同学利用分层抽样的方式从德国获奖选手中抽取了9名获奖代表.

1)请问这9名获奖代表中获金牌、银牌、铜牌的人数分别是多少人?

2)从这9人中随机抽取3人,记这3人中银牌选手的人数为,求的分布列和期望;

3)从这9人中随机抽取3人,求已知这3人中有获金牌运动员的前提下,这3人中恰好有1人为获铜牌运动员的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】定义:对于数列,如果存在常数,使对任意正整数,总有成立,那么我们称数列﹣摆动数列

1)设,判断数列是否为﹣摆动数列,并说明理由;

2)已知﹣摆动数列满足:.求常数的值;

3)设,且数列的前项和为.求证:数列﹣摆动数列,并求出常数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,其中,设

1)如果为奇函数,求实数满足的条件;

2)在(1)的条件下,若函数在区间上为增函数,求的取值范围;

3)若对任意的恒有成立.证明:当时,成立.

查看答案和解析>>

科目: 来源: 题型:

【题目】日照一中为了落实阳光运动一小时活动,计划在一块直角三角形ABC的空地上修建一个占地面积为S的矩形AMPN健身场地.如图,点MAC上,点NAB上,且P点在斜边BC上,已知∠ACB=60°|AC|=30米,|AM|=x米,x[10,20].

(1)试用x表示S,并求S的取值范围;

(2)若在矩形AMPN以外(阴影部分)铺上草坪.已知:矩形AMPN健身场地每平方米的造价为,草坪的每平方米的造价为(k为正常数).设总造价T关于S的函数为T=f(S),试问:如何选取|AM|的长,才能使总造价T最低.

查看答案和解析>>

科目: 来源: 题型:

【题目】设等差数列的前项和为,在同一个坐标系中,的部分图象如图所示,则( ).

A. 时,取得最大值 B. 时,取得最大值

C. 时,取得最小值 D. 时,取得最小值

查看答案和解析>>

同步练习册答案