科目: 来源: 题型:
【题目】已知直线的参数方程是(是参数),以坐标原点为原点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)判断直线与曲线的位置关系;
(2)过直线上的点作曲线的切线,求切线长的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】随着医院对看病挂号的改革,网上预约成为了当前最热门的就诊方式,这解决了看病期间病人插队以及医生先治疗熟悉病人等诸多问题;某医院研究人员对其所在地区年龄在10~60岁间的位市民对网上预约挂号的了解情况作出调查,并将被调查的人员的年龄情况绘制成频率分布直方图,如下所示.
(1)若被调查的人员年龄在20~30岁间的市民有300人,求被调查人员的年龄在40岁以上(含40岁)的市民人数;
(2)若按分层抽样的方法从年龄在以及内的市民中随机抽取10人,再从这10人中随机抽取3人进行调研,记随机抽取的3人中,年龄在内的人数为,求的分布列以及数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆经过两点,为坐标原点.
(1)求椭圆的标准方程;
(2)设动直线与椭圆有且仅有一个公共点,且与圆相交于两点,试问直线与的斜率之积是否为定值?若是,求出该定值;若不是,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】经市场调查:生产某产品需投入年固定成本为万元,每生产万件,需另投入流动成本为万元,在年产量不足万件时,(万元),在年产量不小于万件时,(万元).通过市场分析,每件产品售价为元时,生产的商品能当年全部售完.
(1)写出年利润(万元)关于年产量(万件)的函数解析式;
(2)当产量为多少时利润最大?并求出最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,已知圆过以下4个不同的点:.
(1)求圆的标准方程;
(2)先将圆向左平移个单位后,再将所有点的横坐标、纵坐标都伸长到原来的倍得到圆,若两个点分别在直线和上,为圆上任意一点,且(为常数),证明直线过圆的圆心,并求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了调查国企员工对新个税法的满意程度,研究人员在地各个国企中随机抽取了1000名员工进行调查,并将满意程度以分数的形式统计成如下的频率分布表,其中.(计算结果保留两位小数)
分数 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
频率 | 0.08 | 0.35 | 0.27 |
(1)试估计被调查的员工的满意程度的中位数;
(2)若把每组的组中值作为该组的满意程度,试估计被调查的员工的满意程度的平均数.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为 (为参数),以为极点,以轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为
(1)求曲线的普通方程和直线的直角坐标方程;
(2)设点,若直线与曲线相交于,两点,且,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com