科目: 来源: 题型:
【题目】某大学就业部从该校2018年毕业的且已就业的大学本科生中随机抽取100人进行问卷调查,其中有一项是他们的月薪情况.经调查发现,他们的月薪在3000元到10000元之间,根据统计数据得到如下频率分布直方图:
![]()
若月薪在区间
的左侧,则认为该大学本科生属“就业不理想”的学生,学校将联系本人,咨询月薪过低的原因,从而为本科生就业提供更好的指导意见.其中
,
分别为样本平均数和样本标准差计,计算可得
元(同一组中的数据用该区间的中点值代表).
(1)现该校2018届大学本科生毕业生张铭的月薪为3600元,试判断张铭是否属于“就业不理想”的学生?
(2)为感谢同学们对这项调查工作的支持,该校利用分层抽样的方法从样本的前3组中抽取6人,各赠送一份礼品,并从这6人中再抽取2人,各赠送某款智能手机1部,求获赠智能手机的2人中恰有1人月薪不超过5000 元的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】若数列
满足
,则称数列
为“平方递推数列”.已知数列
中,
,点
在函数
的图象上,其中
为正整数.
(1)证明数列
是“平方递推数列”,且数列
为等比数列;
(2)设(1)中“平方递推数列”的前
项积为
,即
,求
;
(3)在(2)的条件下,记
,求数列
的前
项和
,并求使
的
的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的离心率为
,
分别为
的上、下顶点且
为
外的动点,且
到
上点的最近距离为1.
![]()
(1)求椭圆
的标准方程;
(2)当
时,设直线
分别与椭圆
交于
两点,若
的面积是
的面积的
倍,求
的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四棱锥
中,
,
,
,
为正三角形.若
,且
与底面
所成角的正切值为
.
![]()
(1)证明:平面
平面
;
(2)
是线段
上一点,记
,是否存在实数
,使二面角
的余弦值为
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】给出下列五个命题:
①函数
在区间
上存在零点;
②要得到函数
的图象,只需将函数
的图象向左平移
个单位;
③若
,则函数
的值城为
;
④“
”是“函数
在定义域上是奇函数”的充分不必要条件;
⑤已知
为等差数列,若
,且它的前
项和
有最大值,那么当
取得最小正值时,
.
其中正确命题的序号是________.
查看答案和解析>>
科目: 来源: 题型:
【题目】对于给定的正整数k,若正项数列
满足
,对任意的正整数n(
)总成立,则称数列
是“
数列”.
(1)证明:若
是正项等比数列,则
是“
数列”;
(2)已知正项数列
既是“
数列”,又是“
数列”,
①证明:
是等比数列;
②若
,
,且存在
,使得
为数列
中的项,求q的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
(a,
).
(1)若
,且
在
内有且只有一个零点,求a的值;
(2)若
,且
有三个不同零点,问是否存在实数a使得这三个零点成等差数列?若存在,求出a的值,若不存在,请说明理由;
(3)若
,
,试讨论是否存在
,使得
.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知边长为2的正三角形ABE所在的平面与菱形ABCD所在的平面垂直,且
,点F是BC上一点,且
.
![]()
(1)当
时,证明:
;
(2)是否存在一个常数k,使得三棱锥
的体积等于四棱锥
的体积的
,若存在,求出k的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com