精英家教网 > 试题搜索列表 >设定义域为R的函数f(x)=

设定义域为R的函数f(x)=答案解析

科目:gzsx 来源: 题型:

精英家教网设定义域为R的函数f(x)=
|x+1|,x≤0
x2-2x+1,x>0

(Ⅰ)在平面直角坐标系内作出函数f(x)的图象,并指出f(x)的单调区间(不需证明);
(Ⅱ)若方程f(x)+2a=0有两个解,求出a的取值范围(只需简单说明,不需严格证明).
(Ⅲ)设定义为R的函数g(x)为奇函数,且当x>0时,g(x)=f(x),求g(x)的解析式.

查看答案和解析>>

科目:gzsx 来源: 题型:

10、设定义域为R的函数f(x),g(x)都有反函数,且函数f(x+2)和g-1(x-3)的图象关于直线y=x对称,若g(3)=2009,则f(5)等于(  )

查看答案和解析>>

科目:gzsx 来源: 题型:

精英家教网设定义域为R的函数f(x)=
|lg|x-2||(x≠2)
0
,若b<0,则关于x的方程f2(x)+bf(x)=0的不同实根共有(  )
A、4个B、5个C、7个D、8个

查看答案和解析>>

科目:gzsx 来源: 题型:

设定义域为R的函数f(x)=|x2-2x|,则关于x的方程g(x)=
1
3
f3(x)-f2(x)+2
,能让g(x)取极大值的x个数为(  )

查看答案和解析>>

科目:gzsx 来源: 题型:

15、(理)设定义域为R的函数f(x)=|x2-2x-3|,若关于x的方程f2(x)+bf(x)+c=0有且只有5个不同的实数根x1,x2,x3,x4,x5,则x1+x2+x3+x4+x5=
5

查看答案和解析>>

科目:gzsx 来源: 题型:

(2013•昌平区一模)设定义域为R的函数f(x)满足以下条件;则以下不等式一定成立的是(  )
(1)对任意x∈R,f(x)+f(-x)=0;
(2)对任意x1,x2∈[1,a],当x2>x1时,有f(x2)>f(x1).
①f(a)>f(0)
②f(
1+a
2
)>f(
a

③f(
1-3a
1+a
)>f(-3)
④f(
1-3a
1+a
)>f(-a)

查看答案和解析>>

科目:gzsx 来源: 题型:

设定义域为R的函数f(x)=
a  (x=1)
(
1
2
)|x+1|+1(x≠1)
,若关于x的方程2f2(x)-(2a+3)f(x)+3a=0有五个不同的实数解,则a的取值范围是(  )
A、(0,1)
B、(0,
1
2
)∪(
1
2
,1)
C、(1,2)
D、(1,
3
2
)∪(
3
2
,2)

查看答案和解析>>

科目:gzsx 来源: 题型:

(2013•闸北区二模)设定义域为R的函数f(x)=
2x+1a+4x
为偶函数,其中a为实常数.
(1)求a的值,指出并证明该函数的其它基本性质;
(2)请你选定一个区间D,求该函数在区间D上的反函数f-1(x).

查看答案和解析>>

科目:gzsx 来源: 题型:

设定义域为R的函数f(x)满足:对于任意的实数x,y都有f(x+y)=f(x)+f(y)成立,且当x>0时,f(x)<0恒成立.
(1)判断f(x)的奇偶性及单调性,并对f(x)的奇偶性结论给出证明;
(2)若函数f(x)在[-3,3]上总有f(x)≤6成立,试确定f(1)应满足的条件;
(3)解x的不等式
1
n
f(x2)-f(x)>
1
n
f(ax)-f(a)
(n是一个给定的正整数,a∈R).

查看答案和解析>>

科目:gzsx 来源: 题型:

(2012•河西区一模)设定义域为r的函数f(x)=
|lgx|        x>0
-x2-2x      x≤0
,若关于x的函数y=2f2(x)+2bf(x)+1有8个不同的零点,则实数b的取值范围是(  )

查看答案和解析>>

科目:gzsx 来源: 题型:

设定义域为R的函数f(x),g(x)都有反函数,且函数f(x-1)和g-1(x-3)图象关于直线y=x对称,若g(5)=2005,则f(4)为(  )

查看答案和解析>>

科目:gzsx 来源: 题型:

设定义域为R的函数f(x),g(x)都有反函数,且函数f(x-1)和g-1(x-2)的图象关于直线y=x对称,若g(5)=2004,则f(4)为(  )

查看答案和解析>>

科目:gzsx 来源: 题型:

设定义域为R的函数f(x)=
lg|x-1|,x≠1
0,x=1
,则关于x的方程f2(x)+bf(x)+c=0有5个不同的实数解得充要条件是(  )
A、b<0且c>0
B、b>0且c<0
C、b<0且c=0
D、b≥0且c=0

查看答案和解析>>

科目:gzsx 来源: 题型:

设定义域为R的函数f(x)=
|lg|x-1||,x≠1
0,          x=1
,则关于x的方程f2(x)+bf(x)+c=0有7个不同实数解的充要条件是 (  )

查看答案和解析>>

科目:gzsx 来源: 题型:

设定义域为R的函数f(x)满足下列条件:①对任意x∈R,f(x)+f(-x)=0;②对任意x1,x2∈[1,a],当x2>x1时,有f(x2)>f(x1)>0.则下列不等式不一定成立的是(  )
A、f(a)>f(0)
B、f(
1+a
2
)>f(
a
)
C、f(
1-3a
1+a
)>f(-3)
D、f(
1-3a
1+a
)>f(-a)

查看答案和解析>>

科目:gzsx 来源: 题型:

设定义域为R的函数f(x)=
a,(x=1)
(
1
2
)
|x-1|
+1,(x≠1)
,若关于x的方程2f2(x)-(2a+3)f(x)+3a=0有五个不同的实数解,则符合题意的a的取值范围是
1<a<
3
2
3
2
<a<2.
1<a<
3
2
3
2
<a<2.

查看答案和解析>>

科目:gzsx 来源: 题型:

设定义域为R的函数f(x)=x2-4,若关于x的函数y=f2(x)-4|f(x)|+c有8个不同的零点,则实数c的取值范围是
 

查看答案和解析>>

科目:gzsx 来源: 题型:

设定义域为R+的函数f(x),对任意的正实数x,y,都有f(xy)=f(x)+f(y),且当x>1时有f(x)>0.
①求f(1)的值;      
②判断f(x)在(0,+∞)上的单调性,并证明.
③若f(
1a
)=-1,求满足不等式f(1-x-2x2)≤1的x的取值范围.

查看答案和解析>>

科目:gzsx 来源: 题型:

设定义域为R的函数f(x)满足下列条件:①对任意x∈R,f(x)+f(-x)=0;②对任意x∈[-1,1],都有
f(x1)-f(x2)  
x1-x2
>0
,且f(-1)=-1.若函数f(x)≤t2-2at+1对所有的x∈[-1,1]都成立,则当a∈[-1,1]时,t的取值范围是(  )

查看答案和解析>>

科目:gzsx 来源: 题型:

设定义域为R的函数f(x),g(x)都有反函数,g(x)的反函数为h(x),令u(x)=f(x-1),v(x)=h(x-3),可得函数u(x)和v(x)图象关于直线y=x对称,若g(5)=2005,则f(4)等于(  )

查看答案和解析>>