0  442219  442227  442233  442237  442243  442245  442249  442255  442257  442263  442269  442273  442275  442279  442285  442287  442293  442297  442299  442303  442305  442309  442311  442313  442314  442315  442317  442318  442319  442321  442323  442327  442329  442333  442335  442339  442345  442347  442353  442357  442359  442363  442369  442375  442377  442383  442387  442389  442395  442399  442405  442413  447090 

12.(2009安徽卷理)(本小题满分12分)

 已知函数,讨论的单调性.

本小题主要考查函数的定义域、利用导数等知识研究函数的单调性,考查分类讨论的思想方法和运算求解的能力。本小题满分12分。

解:的定义域是(0,+), 21世纪教育网   

,二次方程的判别式.

①   当,即时,对一切都有,此时上是增函数。

②   当,即时,仅对,对其余的都有,此时上也是增函数。     

③   当,即时,

方程有两个不同的实根,,.








+
0
_
0
+

单调递增
极大
单调递减
极小
单调递增

此时上单调递增, 在是上单调递减, 在上单调递增.

试题详情

11.(2009广东卷理)(本小题满分14分)

已知二次函数的导函数的图像与直线平行,且处取得极小值.设

(1)若曲线上的点到点的距离的最小值为,求的值;

(2)如何取值时,函数存在零点,并求出零点.       

解:(1)依题可设 (),则

   又的图像与直线平行     

   , 

,则 21世纪教育网   

当且仅当时,取得最小值,即取得最小值

时,  解得

时,  解得

  (2)由(),得 

时,方程有一解,函数有一零点

时,方程有二解

函数有两个零点,即

函数有两个零点,即

时,方程有一解,  ,

函数有一零点

综上,当时, 函数有一零点

(),或()时,

函数有两个零点

时,函数有一零点.

试题详情

10.设函数,其中常数a>1

(Ⅰ)讨论f(x)的单调性;

(Ⅱ)若当x≥0时,f(x)>0恒成立,求a的取值范围。21世纪教育网  

解析:本题考查导数与函数的综合运用能力,涉及利用导数讨论函数的单调性,第一问关键是通过分析导函数,从而确定函数的单调性,第二问是利用导数及函数的最值,由恒成立条件得出不等式条件从而求出的范围。

解: (I) 21世纪教育网  

    由知,当时,,故在区间是增函数;

     当时,,故在区间是减函数;

     当时,,故在区间是增函数。

     综上,当时,在区间是增函数,在区间是减函数。

   (II)由(I)知,当时,处取得最小值。

       

          

       

由假设知21世纪教育网  

       即   解得  1<a<6

的取值范围是(1,6)

试题详情

9.(2009山东卷文)(本小题满分12分)

已知函数,其中    

(1)    当满足什么条件时,取得极值?

(2)    已知,且在区间上单调递增,试用表示出的取值范围.

解:  (1)由已知得,令,得,

要取得极值,方程必须有解,

所以△,即,  此时方程的根为

,,

所以    

时,

x
(-∞,x1)
x 1
(x1,x2)
x2
(x2,+∞)
f’(x)
+
0

0
+
f (x)
增函数
极大值
减函数
极小值
增函数

所以在x 1, x2处分别取得极大值和极小值.

时,    

x
(-∞,x2)
x 2
(x2,x1)
x1
(x1,+∞)
f’(x)

0
+
0

f (x)
减函数
极小值
增函数
极大值
减函数

所以在x 1, x2处分别取得极大值和极小值.

综上,当满足时, 取得极值.    

(2)要使在区间上单调递增,需使上恒成立.

恒成立,  所以

,,

(舍去),    

时,,当,单调增函数;

,单调减函数,

所以当时,取得最大,最大值为.

所以

时,,此时在区间恒成立,所以在区间上单调递增,当最大,最大值为,所以

综上,当时, ;   当时,    

[命题立意]:本题为三次函数,利用求导的方法研究函数的极值、单调性和函数的最值,函数在区间上为单调函数,则导函数在该区间上的符号确定,从而转为不等式恒成立,再转为函数研究最值.运用函数与方程的思想,化归思想和分类讨论的思想解答问题.

试题详情

8.(2009山东卷理)(本小题满分12分)

两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k ,当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065.

(1)将y表示成x的函数;

(11)讨论(1)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由。

解法一:(1)如图,由题意知AC⊥BC,,

其中当时,y=0.065,所以k=9

所以y表示成x的函数为

(2),,令,所以,即,当时, ,即所以函数为单调减函数,当时, ,即所以函数为单调增函数.所以当时, 即当C点到城A的距离为时, 函数有最小值.

解法二: (1)同上.

(2)设,

,,所以

当且仅当时取”=”.

下面证明函数在(0,160)上为减函数, 在(160,400)上为增函数.

设0<m1<m2<160,则

 

,

因为0<m1<m2<160,所以4>4×240×240

9 m1m2<9×160×160所以,

所以函数在(0,160)上为减函数.

同理,函数在(160,400)上为增函数,设160<m1<m2<400,则

因为1600<m1<m2<400,所以4<4×240×240, 9 m1m2>9×160×160

所以,

所以函数在(160,400)上为增函数.

所以当m=160即时取”=”,函数y有最小值,

所以弧上存在一点,当时使建在此处的垃圾处理厂对城A和城B的总影响度最小.

[命题立意]:本题主要考查了函数在实际问题中的应用,运用待定系数法求解函数解析式的 能力和运用换元法和基本不等式研究函数的单调性等问题.

试题详情

7.(2009江苏卷)(本小题满分16分)

为实数,函数.

(1)若,求的取值范围;

(2)求的最小值;

(3)设函数直接写出(不需给出演算步骤)不等式的解集.

[解析]本小题主要考查函数的概念、性质、图象及解一元二次不等式等基础知识,考查灵活运用数形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力。满分16分

(1)若,则

(2)当时,

  当时,

  综上

(3)时,

时,

时,△>0,得:

讨论得:当时,解集为;

时,解集为;

时,解集为.

试题详情

6.(2009北京理)(本小题共13分)

设函数

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)求函数的单调区间;

(Ⅲ)若函数在区间内单调递增,求的取值范围.

21世纪教育网       [解析]本题主要考查利用导数研究函数的单调性和极值、解不等式等基础知识,考查综合分析和解决问题的能力.

(Ⅰ),

       曲线在点处的切线方程为.

(Ⅱ)由,得

    若,则当时,,函数单调递减,

        当时,,函数单调递增,

   若,则当时,,函数单调递增,

    当时,,函数单调递减,

(Ⅲ)由(Ⅱ)知,若,则当且仅当

时,函数内单调递增,

,则当且仅当

时,函数内单调递增,

综上可知,函数内单调递增时,的取值范围是.

试题详情

5.(2009北京文)(本小题共14分)

设函数.

(Ⅰ)若曲线在点处与直线相切,求的值;

(Ⅱ)求函数的单调区间与极值点.

[解析]本题主要考查利用导数研究函数的单调性和极值、解不等式等基础知识,考查综合分析和解决问题的能力.

(Ⅰ),

∵曲线在点处与直线相切,

(Ⅱ)∵,

时,,函数上单调递增,

此时函数没有极值点.

时,由

时,,函数单调递增,

时,,函数单调递减,

时,,函数单调递增,

∴此时的极大值点,的极小值点.

试题详情

4.(2009浙江文)(本题满分15分)已知函数

  (I)若函数的图象过原点,且在原点处的切线斜率是,求的值;

  (II)若函数在区间不单调,求的取值范围.

解析:(Ⅰ)由题意得

    又 ,解得

   (Ⅱ)函数在区间不单调,等价于

      导函数既能取到大于0的实数,又能取到小于0的实数

      即函数上存在零点,根据零点存在定理,有

      ,  即:

    整理得:,解得

试题详情

3.(2009浙江理)(本题满分14分)已知函数

其中.21世纪教育网  

  (I)设函数.若在区间不单调,求的取值范围;

  (II)设函数  是否存在,对任意给定的非零实数,存在惟一

的非零实数(),使得成立?若存在,求的值;若不存

在,请说明理由.

解析:(I)因,因在区间不单调,所以上有实数解,且无重根,由 21世纪教育网   

,令,记上单调递减,在上单调递增,所以有,于是,得,而当时有上有两个相等的实根,故舍去,所以;21世纪教育网  

(II)当时有

时有,因为当时不合题意,因此

下面讨论的情形,记A,B=(ⅰ)当时,上单调递增,所以要使成立,只能,因此有,(ⅱ)当时,上单调递减,所以要使成立,只能,因此,综合(ⅰ)(ⅱ)

时A=B,则,即使得成立,因为上单调递增,所以的值是唯一的;

同理,,即存在唯一的非零实数,要使成立,所以满足题意.21世纪教育网  

试题详情


同步练习册答案