2.若函数是函数的反函数,则的值是( )
A. B.0 C.1 D.2
1.设集合,那么“”是“”的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既非充分又非必要条件
24.如图3-112所示,水平方向的匀强电场的场强为E(场区宽度为L,竖直方向足够长),紧挨着电场的是垂直纸面向外的两个匀强磁场区,其磁感应强度分别为B和2B.一个质量为m、电量为q的带正电粒子(不计重力),从电场的边界MN上的a点由静止释放,经电场加速后进入磁场,经过tB=πm/6qB时间穿过中间磁场,进入右边磁场后能按某一路径再返回到电场的边界MN上的某一点b(虚线为场区的分界面).求:
图3-112
(1)中间磁场的宽度d;
(2)粒子从a点到b点共经历的时间tab;
(3)当粒子第n次到达电场的边界MN时与出发点a之间的距离sn.
25.在真空室内,速度为v=6.4×107m/s的电子束连续地沿两平行导体极板的中心线射入,如图3-113所示,极板长L=8.0×10-2m,两极板间的距离d=5.0×10-3m,两极板不带电时,电子束将沿中心线射出极板.今在两极板间加上50Hz的交变电压u=U0sin100πt(V),发现有时有电子从两极板之间射出,有时则无电子从两极板间射出.若有电子射出的时间间隔与无电子射出的时间间隔之比为Δt1/Δt2=2∶1,则所加的交变电压的最大值U0为多大?(已知电子的质量为m=9.1×10-31kg,电量为e=1.6×10-19C)
23.如图3-111所示,三块平行金属板竖直固定在表面光滑的绝缘小车上,并与车内的电池连接,小车的总质量为M,A、B板,B、C板间距均为L,金属扳B、C上,开有小孔,两小孔的连线沿水平方向且垂直于三块金属板,整个装置静止在光滑水平面上,已知车内电池G的电动势为E1,电池H的电动势为E2,现有一质量为m,带电量为+q的小球以初速度v0沿两孔连线方向射入小车(设带电小球不影响板间电场).
图3-111
(1)小球进入小车中由C板向B板运动时,小球和小车各做什么运动?
(2)证明小球由C板到B板的过程中,电场力对球和小车组成的系统做功为qE1;
(3)为使小球不打到A板上,电池H的电动势E2应满足什么条件?
22.匀强电场的场强E=2.0×10-3V/m,方向水平,电场中有两个带电质点,它们的质量均为m=1.0×10-5kg,质点A带负电,质点B带正电,电量皆为q=1.0×10-9C.开始时,两质点位于同一等势面上,A的初速度vA0=2.0m/s,B的初速度vB0=1.2m/s,均沿场强方向,在以后的运动过程中,求:
(1)经多少时间两质点再次位于同一等势面上;
(2)两质点再次位于同一等势面上之前它们间的最大距离.
20.正负电子对撞机的最后部分的简化示意图如图3-109甲所示(俯视图),位于水平面内的粗实线所示的圆环形真空管道是正、负电子做圆运动的“容器”,经过加速器加速后的正、负电子被分别引入该管道时,具有相等的速率v,它们沿着管道向相反的方向运动.在管道内控制它们转弯的是一系列圆形电磁铁,即图中的A1、A2、A3……An共有n个,均匀分布在整个圆环上,每个电磁铁内的磁场都是磁感应强度相同的匀强磁场,并且方向竖直向下,磁场区域的直径为d,改变电磁铁内电流的大小,就可改变磁场的磁感应强度,从而改变电子偏转的角度.经过精确的调整,首先实现电子在环形管道中沿图3-109甲中粗虚线所示的轨迹运动,这时电子经过每个电磁场区域时射入点和射出点都是电磁场区域的同一条直径的两端,如图3-109乙所示.这就为进一步实现正、负电子的对撞作好了准备.
图3-109
(1)试确定正、负电子在管道内各是沿什么方向旋转的;
(2)已知正、负电子的质量都是m,所带电荷都是元电荷e,重力可不计,求电磁铁内匀强磁场的磁感应强度B的大小.
21.如图3-110所示,理想变压器原线圈中输入电压U1=3300V,副线圈两端电压U2为220V,输出端连有完全相同的两个灯泡L1和L2,绕过铁芯的导线所接的电压表V的示数U=2V,求:
图3-110
(1)原线圈n1等于多少匝?
(2)当开关S断开时,表A2的示数I2=5A,则表A1的示数I1为多少?
(3)当开关S闭合时,表A1的示数I1′等于多少?
19.如图3-108甲所示,x轴上方为一垂直于平面xOy向里的匀强磁场,磁感应强度为B,x轴下方为方向平行于x轴,但大小一定(假设为E0)、方向作周期性变化的电场.在坐标为(R,R)的A点和第四象限中某点各放置一个质量为m,电量为q的正点电荷P和Q,P、Q的重力及它们之间的相互作用力均不计,现使P在匀强磁场中开始做半径为R的匀速圆周运动,同时释放Q,要使两电荷总是以相同的速度同时通过y轴,求:
图3-108
(1)场强E0的大小及方向变化的周期;
(2)在如图3-108乙所示的E-t图中作出该电场的变化图象(以释放电荷P时为初始时刻,x轴正方向作为场强的正方向),要求至少画出两个周期的图象.
17.如图3-106所示为测量某种离子的荷质比的装置.让中性气体分子进入电离室A,在那里被电离成离子.这些离子从电离室的小孔飘出,从缝S1进入加速电场被加速,然后让离子从缝S2垂直进入匀强磁场,最后打在底片上的P点.已知加速电压为U,磁场的磁感应强度为B,缝S2与P之间的距离为a,离子从缝S1进入电场时的速度不计,求该离子的荷质比q/m.
18.示波器是一种多功能电学仪器,可以在荧光屏上显示出被检测的电压波形.它的工作原理等效成下列情况:(如图3-107所示)真空室中电极K发出电子(初速不计),经过电压为U1的加速电场后,由小孔S沿水平金属板A、B间的中心线射入板中.板长L,相距为d,在两板间加上如图乙所示的正弦交变电压,前半个周期内B板的电势高于A板的电势,电场全部集中在两板之间,且分布均匀.在每个电子通过极板的极短时间内,电场视作恒定的.在两极板右侧且与极板右端相距D处有一个与两板中心线垂直的荧光屏,中心线正好与屏上坐标原点相交.当第一个电子到达坐标原点O时,使屏以速度v沿-x方向运动,每经过一定的时间后,在一个极短时间内它又跳回到初始位置,然后重新做同样的匀速运动.(已知电子的质量为m,带电量为e,不计电子重力)求:
图3-107
(1)电子进入AB板时的初速度;
(2)要使所有的电子都能打在荧光屏上,图乙中电压的最大值U0需满足什么条件?
(3)要使荧光屏上始终显示一个完整的波形,荧光屏必须每隔多长时间回到初始位置?计算这个波形的峰值和长度.在如图3-107丙所示的x-y坐标系中画出这个波形.
15.如图3-105所示,在倾角为θ的光滑斜面上,存在着两个磁感应强度大小均为B的匀强磁场,区域Ⅰ磁场方向垂直斜面向下,区域Ⅱ磁场方向垂直斜面向上,磁场宽度均为L,一个质量为m、电阻为R、边长也为L的正方形线框,由静止开始下滑,沿斜面滑行一段距离后ab边刚越过ee′进入磁场区域Ⅰ时,恰好做匀速直线运动,若当ab边到达gg′与ff′的中间位置时,线框又恰好做匀速直线运动,求:
图3-105
(1)当ab边刚越过ee′进入磁场区域Ⅰ时做匀速直线运动的速度v;
(2)当ab边刚越过ff′进入磁场区域Ⅱ时,线框的加速度a;
(3)线框从ab边开始进入磁场Ⅰ至ab边到达gg′与ff′的中间位置的过程产生的热量Q.
16.长为L的细线一端系有一带正电小球,另一端拴在空间O点,加一大小恒定的匀强电场,使小球受的电场力大小总是等于重力的倍,当电场取不同方向时,可使小球绕O点以半径L分别在水平面内、竖直平面内、倾斜平面内做圆周运动.
(1)小球在竖直平面内做圆周运动时,求其运动速度最小值;
(2)当小球在与水平面成30°角的平面内恰好做圆周运动时,求小球运动的最大速度及此时电场的方向.
图3-106
13.如图3-104所示,金属杆ab和cd的长均为L,电阻均为R,质量分别为M和m,M>m.用两根质量和电阻均可忽略的不可伸长的柔软导线将它们连成闭合回路,并悬挂在水平、光滑不导电的圆棒两侧,两金属杆都处于水平位置,整个装置处于一与回路平面垂直的匀强磁场中,磁感应强度为B,若金属杆ab恰好匀速向下运动,求运动速度.
14.火箭发动机产生的推力F等于火箭在单位时间内喷出的推进剂质量J与推进剂速度v的乘积,即F=Jv.质子火箭发动机喷出的推进剂是质子,这种发动机用于在外层空间中产生微小的推力来纠正卫星的轨道或姿态.设一台质子发动机喷出的质子流的电流I=1.0A,用于加速质子的电压U=5.0×104V,质子质量m=1.6×10-27kg,求该发动机的推力(取2位有效数字).
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com