精英家教网 > 高中数学 > 题目详情
若双曲线
x2
a
-
y2
b
=1
(a>0,b>0)和椭圆
x2
m
+
y2
n
=1
(m>n>0)有共同的焦点F1,F2.P是两条曲线的一个交点,则|PF1|2+|PF2|2=(  )
A.2(m2+a2B.2(m+a)C.4(a+b)D.4(m-n)
相关习题

科目:高中数学 来源: 题型:

若双曲线
x2
a
-
y2
b
=1
(a>0,b>0)和椭圆
x2
m
+
y2
n
=1
(m>n>0)有共同的焦点F1,F2.P是两条曲线的一个交点,则|PF1|2+|PF2|2=(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若双曲线
x2
a
-
y2
b
=1
(a>0,b>0)和椭圆
x2
m
+
y2
n
=1
(m>n>0)有共同的焦点F1,F2.P是两条曲线的一个交点,则|PF1|2+|PF2|2=(  )
A.2(m2+a2B.2(m+a)C.4(a+b)D.4(m-n)

查看答案和解析>>

科目:高中数学 来源: 题型:

若双曲线
x2
a
-
y2
b
=1(a>0,b>0)
和椭圆
x2
m
+
y2
n
=1(m>n>0)
有共同的焦点F1,F2,P是两条曲线的一个交点,则|PF1|•|PF2|=(  )
A、m2-a2
B、
m
-
a
C、
1
2
(m-a)
D、(m-a)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线c:
x2
a
-
y2
b
=1(a>.,b>0)的半焦距为c,过左焦点且斜率为1的直线与双曲线C的左、右支各有一个交点,若抛物线y2=4cx的准线被双曲线截得的线段长大于
2
2
3
be2.(e为双曲线c的离心率),则e的取值范同是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

若椭圆
x2
a
+
y2
b
=1(a>b>0)
和双曲线
x2
m
-
y2
n
=1(m,n>0)
有相同的焦点F1、F2,P是两曲线的交点,则|PF1|•|PF2|的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知双曲线
x2
a 2
-
y2
b 2
=1
(b>a>0),0为坐标原点,离心率e=2,点M(
5
3
)在双曲线上.
(1)求双曲线的方程;
(2)若直线l与双曲线交于P、Q两点,且
OP
OQ
=0,求:|OP|2+|OQ|2的最小值.

查看答案和解析>>

科目:高中数学 来源:蚌埠二模 题型:单选题

点A是抛物线C1:y2=2px(p>0)与双曲线C2
x2
a
-
y2
b
=1
(a>0,b>0)的一条渐近线的交点,若点A到抛物线C1的准线的距离为p,则双曲线C2的离心率等于(  )
A.
2
B.
3
C.
5
D.
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•蚌埠二模)点A是抛物线C1:y2=2px(p>0)与双曲线C2
x2
a
-
y2
b
=1
(a>0,b>0)的一条渐近线的交点,若点A到抛物线C1的准线的距离为p,则双曲线C2的离心率等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌三模)已知双曲线c:
x2
a
-
y2
b
=1(a>.,b>0)的半焦距为c,过左焦点且斜率为1的直线与双曲线C的左、右支各有一个交点,若抛物线y2=4cx的准线被双曲线截得的线段长大于
2
2
3
be2.(e为双曲线c的离心率),则e的取值范同是
2
3
2
3

查看答案和解析>>


同步练习册答案