精英家教网 > 高中数学 > 题目详情
已知抛物线的顶点在原点,焦点在y轴正半轴上,抛物线上的点P(m,-2)到焦点的距离为4,则m的值为(  )
A.4B.-2C.4或-4D.12或-2
相关习题

科目:高中数学 来源: 题型:

已知抛物线的顶点在原点,焦点在x轴的正半轴,且过点(2,4).
(1)求抛物线的标准方程;
(2)已知直线y=kx-2交抛物线于A、B两点,且AB的中点的横坐标为2,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线的顶点在原点,焦点在y轴正半轴上,抛物线上的点P(m,-2)到焦点的距离为4,则m的值为(  )
A、4B、-2C、4或-4D、12或-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线的顶点在原点,焦点在y轴的负半轴上,过其上一点P(x0,y0)(x0≠0)的切线方程为y-y0=2ax0(x-x0)(a为常数).
(I)求抛物线方程;
(II)斜率为k1的直线PA与抛物线的另一交点为A,斜率为k2的直线PB与抛物线的另一交点为B(A、B两点不同),且满足k2+λk1=0(λ≠0,λ≠-1),
BM
MA
,求证线段PM的中点在y轴上;
(III)在(II)的条件下,当λ=1,k1<0时,若P的坐标为(1,-1),求∠PAB为钝角时点A的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线的顶点在原点,焦点在x轴的正半轴上,F为焦点,A,B,C为抛物线上的三点,且满足
FA
+
FB
+
FC
=
0
|
FA
|+
|
FB
|+
|
FC
|=6
,则抛物线的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线的顶点在原点,焦点在y轴的正半轴上,点A(x1,y1)B(x2,y2)C(x3,y3)在抛物线上,若△ABC的重心恰为抛物线的焦点F,且|FA|+|FB|+|FC|=6,则抛物线的方程为
x2=4y
x2=4y

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线的顶点在原点,焦点在y轴上,抛物线上一点(a,-3)到焦点的距离等于5,求a的值,并写出抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线的顶点在原点,焦点在x轴,抛物线上有两个动点A、B和一个定点M(2,y0),F是抛物线的焦点,且|AF|、|MF|、|BF|成等差数列,线段AB的中点到抛物线准线的距离是4,求抛物线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线的顶点在原点,焦点在y轴上,其上的点P(m,3)到焦点的距离为5,则抛物线方程为(  )
A、x2=8yB、x2=4yC、x2=-4yD、x2=-8y

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线的顶点在原点,焦点在x轴上且经过点(-2,4).
(Ⅰ)求抛物线的方程;
(Ⅱ)求抛物线被直线2x+y+8=0所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线的顶点在原点,焦点在轴上,斜率为的直线交两点,若,且以为直径的圆经过原点,求直线和抛物线的方程.

查看答案和解析>>


同步练习册答案