精英家教网 > 高中数学 > 题目详情
极坐标( 1 , 
3
 )
对应的点在以极点为坐标原点,极轴为横轴的直角坐标系的(  )
A.第一象限B.第二象限C.第三象限D.第四象限
相关习题

科目:高中数学 来源: 题型:

极坐标( 1 , 
3
 )
对应的点在以极点为坐标原点,极轴为横轴的直角坐标系的(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

极坐标( 1 , 
3
 )
对应的点在以极点为坐标原点,极轴为横轴的直角坐标系的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源:葫芦岛模拟 题型:解答题

选修4-4:坐标系与参数方程.
在平面直角坐标系中,曲线C1的参数方程为
x=acos?
y=bsin?
(a>b>0,?为参数),以Ο为极点,x轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,已知曲线C1上的点M(2,
3
)对应的参数φ=
π
3
;θ=
π
4
;与曲线C2交于点D(
2
π
4

(1)求曲线C1,C2的方程;
(2)A(ρ?,θ),Β(ρ2,θ+
π
2
)是曲线C1上的两点,求
1
ρ21
+
1
ρ22
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网本题有(1),(2),(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑.
(1)选修4-2:矩阵与变换
如图所示:△OAB在伸缩变换M作用下变为△OA1B1
(i)求矩阵M的特征值及相应的特征向量;
(ii)求逆矩阵M-1以及(M-120
(2)选修4-4:坐标系与参数方程.
已知曲线C1的参数方程为
x=2sinθ
y=cosθ
(θ为参数),曲线C2的参数方程为
x=2t
y=t+1
(t为参数)
(i)若将曲线C1与C2上各点的横坐标都缩短为原来的一半,分别得到曲线C1和C2,求出曲线C1和C2的普通方程;
(ii)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求过极点且与C2垂直的直线的极坐标方程.
(3)选修4-5:不等式选讲
已知a,b,c为实数,且a+b+c+2-2m=0,a2+
b 2
4
+
c 2
9
+m-1=0
(i)求证:a2+
b 2
4
+
c 2
9
(a+b+c) 2
14

(ii)求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•葫芦岛模拟)选修4-4:坐标系与参数方程.
在平面直角坐标系中,曲线C1的参数方程为
x=acos?
y=bsin?
(a>b>0,?为参数),以Ο为极点,x轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,已知曲线C1上的点M(2,
3
)对应的参数φ=
π
3
;θ=
π
4
;与曲线C2交于点D(
2
π
4

(1)求曲线C1,C2的方程;
(2)A(ρ1,θ),Β(ρ2,θ+
π
2
)是曲线C1上的两点,求
1
ρ
2
1
+
1
ρ
2
2
的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省厦门六中高三(上)12月月考数学试卷(理科)(解析版) 题型:解答题

(1)已知矩阵,向量
(Ⅰ)求矩阵A的特征值和对应的特征向量;
(Ⅱ)求向量α,使得A2α=β.
(2)在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知点A、B的极坐标分别为(1,0)、,曲线C的参数方程为为参数,r>0)
(Ⅰ)求直线AB的直角坐标方程;
(Ⅱ)若直线AB和曲线C只有一个交点,求r的值.
(3)设不等式|x-2|>1的解集与关于x的不等式x2-ax+b>0的解集相同.
(Ⅰ)求a,b的值;
(Ⅱ)求函数的最大值,以及取得最大值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)若点A(a,b)(其中a≠b)在矩阵M=
0-1
10
对应变换的作用下得到的点为B(-b,a).
(Ⅰ)求矩阵M的逆矩阵;
(Ⅱ)求曲线C:x2+y2=1在矩阵N=
0
1
2
10
所对应变换的作用下得到的新的曲线C′的方程.
(2)选修4-4:坐标系与参数方程
(Ⅰ)以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位已知直线的极坐标方程为θ=
π
4
(ρ∈R)
,它与曲线
x=2+
5
cosθ
y=1+
5
sinθ
为参数)相交于两点A和B,求|AB|;
(Ⅱ)已知极点与原点重合,极轴与x轴正半轴重合,若直线C1的极坐标方程为:ρcos(θ-
π
4
)=
2
,曲线C2的参数方程为:
x=1+cosθ
y=3+sinθ
(θ为参数),试求曲线C2关于直线C1对称的曲线的直角坐标方程.
(3)选修4-5:不等式选讲
(Ⅰ)已知函数f(x)=|x+3|,g(x)=m-2|x-11|,若2f(x)≥g(x+4)恒成立,求实数m的取值范围.
(Ⅱ)已知实数x、y、z满足2x2+3y2+6z2=a(a>0),且x+y+z的最大值是1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知矩阵A=
33
24
,向量β=
6
8

(Ⅰ)求矩阵A的特征值和对应的特征向量;
(Ⅱ)求向量α,使得A2α=β.
(2)在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知点A、B的极坐标分别为(1,0)、(1,
π
2
)
,曲线C的参数方程为
x=rcosα
y=rsinα
为参数,r>0)
(Ⅰ)求直线AB的直角坐标方程;
(Ⅱ)若直线AB和曲线C只有一个交点,求r的值.
(3)设不等式|x-2|>1的解集与关于x的不等式x2-ax+b>0的解集相同.
(Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)=a
x-3
+b
5-x
的最大值,以及取得最大值时x的值.

查看答案和解析>>

科目:高中数学 来源:福建模拟 题型:解答题

(1)选修4-2:矩阵与变换
已知向量
1
-1
在矩阵M=
1m
01
变换下得到的向量是
0
-1

(Ⅰ)求m的值;
(Ⅱ)求曲线y2-x+y=0在矩阵M-1对应的线性变换作用下得到的曲线方程.
(2)选修4-4:极坐标与参数方程
在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知点M的极坐标为(4
2
π
4
)
,曲线C的参数方程为
x=1+
2
cosα
y=
2
sinα
(α为参数).
(Ⅰ)求直线OM的直角坐标方程;
(Ⅱ)求点M到曲线C上的点的距离的最小值.
(3)选修4-5:不等式选讲
设实数a,b满足2a+b=9.
(Ⅰ)若|9-b|+|a|<3,求a的取值范围;
(Ⅱ)若a,b>0,且z=a2b,求z的最大值.

查看答案和解析>>

科目:高中数学 来源:2010年高考试题分项版理科数学之专题四三角函数 题型:解答题

21(从以下四个题中任选两个作答,每题10分)

(1)几何证明选讲

AB是⊙O的直径,D为⊙O上一点,过点D作⊙O的切线交AB延长线于C,若DA=DC,求证AB=2BC

(2)矩阵与变换

在平面直角坐标系xOy中,A(0,0),B(-3,),C(-2,1),设k≠0,k∈R,M=,N=,点A、B、C在矩阵MN对应的变换下得到点A1,B1,C1,△A1B1C1的面积是△ABC面积的2倍,求实数k的值

(3)参数方程与极坐标

在极坐标系中,圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值

(4)不等式证明选讲

已知实数a,b≥0,求证:

 

查看答案和解析>>


同步练习册答案