精英家教网 > 初中数学 > 题目详情

【题目】如图,在RtABC中,∠C=90°,以A为圆心,以任意长为半径画弧,分别交ACAB于点MN,再分别以点MN为圆心,以大于MN的长为半径画弧,两弧相交于点P,作射线APBC于点D,若AC=4BC=3,则CD的长为(

A. B. C. D.

【答案】B

【解析】

DDEABE,由题意可知,AP为∠BAC的角平分线,根据角平分线性质打开CD=DE,利用勾股定理可求出AB的长,根据SABC=SACD+SADB即可求出CD的长.

DDEABE

∵∠C=90°AC=4BC=3

AB==5

由题意得:AP是∠BAC的角平分线,

∵∠C=90°DEAB

CD=DE

SABC=SACD+SADB

ACBC=CDAC+ABDE,即×4×3=×4CD+×5CD

解得:CD=.

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,EF分别是ADBC的中点,,若,则下列结论:M是正方形内任一点,当时,的周长的最小值为;其中正确的结论  

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为,吊臂底部A距地面参考数据

当吊臂底部A与货物的水平距离AC5m时,吊臂AB的长为______计算结果精确到

如果该吊车吊臂的最大长度AD20m,那么从地面上吊起货物的最大高度是多少?吊钩的长度与货物的高度忽略不计

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.

(1)求抛物线的解析式;

(2)当点P运动到什么位置时,△PAB的面积有最大值?

(3)过点Px轴的垂线,交线段AB于点D,再过点PPEx轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线的对称轴为直线,且抛物线与轴交于两点,与轴交于点,其中.

(1)若直线经过两点,求直线和抛物线的解析式;

(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;

(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,四边形OACB为菱形,OBx轴的正半轴上,∠AOB=60°,过点A的反比例函数y= 的图像与BC交于点F,则AOF的面积为 ______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线Wy=x-4x+2的顶点为A,与x轴交于点BC.

1)求∠ABC的正切值;

2)若点P是抛物线W上的一点,过P作直线PQ垂直x轴,将抛物线W关于直线PQ对称,得到抛物线,设抛物线的顶点,问:是否存在这样的点P,使得APAˊ为直角三角形?若存在,求出对称所得的抛物线的表达式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.

(1)怎样围才能使矩形场地的面积为750m2

(2)能否使所围矩形场地的面积为810m2 ,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y/千克,y关于x的函数解析式为 且第12天的售价为32/千克,第26天的售价为25/千克.已知种植销售蓝莓的成木是18/千克,每天的利润是W元(利润=销售收入﹣成本).

(1)m=   ,n=   

(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?

(3)在销售蓝莓的30天中,当天利润不低于870元的共有多少天?

查看答案和解析>>

同步练习册答案