【题目】如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,若△CEF的面积为18cm2,则S△DGF等于( )
A.4cm2B.5cm2C.6cm2D.7 cm2
【答案】C
【解析】
取CG的中点H,连接EH,根据三角形的中位线定理可得EH∥AD,所以∠GDF=∠HEF,然后利用“角边角”证明△DFG和△EFH全等,所以FG=FH,S△EFH=S△DGF,易求出FC=3FH,再根据等高的三角形的面积比等于底边的比求出S△EFH,从而得解.
解:如图,取CG的中点H,连接EH,
∵E是AC的中点,
∴EH是△ACG的中位线,
∴EH∥AD,
∴∠GDF=∠HEF,
∵F是DE的中点,
∴DF=EF,
在△DFG和△EFH中,
∴△DFG≌△EFH(ASA),
∴FG=FH,S△EFH=S△DGF ,
又∵FC=FH+HC=FH+GH=FH+FG+FH=3FH,
∴S△CEF=3S△EFH,
∴S△CEF=3S△DGF,
∴S△DGF=×18=6(cm2).
故选:C.
科目:初中数学 来源: 题型:
【题目】阅读下面材料:小明遇到这样一个问题:
如图一,△ABC中,∠A=90°,AB=AC,BD平分∠ABC,猜想线段AD与DC数量关系.小明发现可以用下面方法解决问题:作DE⊥BC交BC于点E:
(1)根据阅读材料可得AD与DC的数量关系为__________.
(2)如图二,△ABC中,∠A=120°,AB=AC,BD平分∠ABC,猜想线段AD与DC的数量关系,并证明你的猜想.
(3)如图三,△ABC中,∠A=100°,AB=AC,BD平分∠ABC,猜想线段AD与BD、BC的数量关系,并证明你的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,AB=3,AD=4,动点P从点B出发,以每秒1个单位的速度,沿BA向点A移动;同时点Q从点C出发,以每秒2个单位的速度,沿CB向点B移动,连接QP,QD,PD.若两个点同时运动的时间为x秒(0<x≤2),解答下列问题:
(1)当x为何值时,PQ⊥DQ;
(2)设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最小值?并求出最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长为3,以点A为圆心,1为半径作圆,E是⊙A上的任意一点,将DE绕点D按逆时针旋转90°,得到DF,连接AF,则AF的最小值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】日历上的规律:表格是2020年元月的日历,图中的阴影区域是在日历中选取的一块九宫格.
(1)九宫格中,四个角的四个数之和与九宫格中央那个数有什么关系?
(2)请你自选一块九宫格进行计算,看四个角上的四个数之和与九宫格中央那个数是否还有这种关系?
(3)试说明原理.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:当点C在线段AB上,AC=nAB时,我们称n为点C在线段AB上的点值,记作dC﹣AB=n.如点C是AB的中点时,即AC=AB,则dC﹣AB=;反过来,当dC﹣AB=时,则有AC=AB.
(1)如图1,点C在线段AB上,若dC﹣AB=,则= ;若AC=3BC,则dC﹣AB= ;
(2)如图2,在△ABC中,∠ACB=90°,CD⊥AB于点D,AB=10cm,BC=6cm,点P、Q分别从点C和点B同时出发,点P沿线段CA以2cm/s的速度向点A运动,点Q沿线段BC以1cm/s的速度向点C运动,当点P到达点A时,点P、Q均停止运动,连接PQ交CD于点E,设运动时间为ts,dP﹣CA+dQ﹣CB=m.
①当≤m≤时,求t的取值范围;
②当dP﹣CA=,求dE﹣CD的值;
③当dE﹣CD=时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】童星玩具厂工人的工作时间为:每月22天,每天8小时.工资待遇为:按件计酬,多劳多得,每月另加福利工资500元,按月结算.该厂生产A、B两种产品,工人每生产一件A种产品可得报酬1.50元,每生产一件B种产品可得报酬2.80元.该厂工人可以选择A、B两种产品中的一种或两种进行生产.工人小李生产1件A产品和1件B产品需35分钟;生产3件A产品和2件B产品需85分钟.
(1)小李生产1件A产品需要 分钟,生产1件B产品需要 分钟.
(2)求小李每月的工资收入范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,数轴上有、、、四个点,分别对应,,,四个数,其中,,与互为相反数,
(1)求,的值;
(2)若线段以每秒3个单位的速度,向右匀速运动,当_______时,点与点重合,当_______时,点与点重合;
(3)若线段以每秒3个单位的速度向右匀速运动的同时,线段以每秒2个单位的速度向左匀速运动,则线段从开始运动到完全通过所需时间多少秒?
(4)在(3)的条件下,当点运动到点的右侧时,是否存在时间,使点与点的距离是点与点的距离的4倍?若存在,请求出值,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com