【题目】如图,在中,点F是边BC的中点,连接AF并延长交DC的延长线于点E,连接AC、BE.
(1)求证:AB=CE;
(2)若,则四边形ABEC是什么特殊四边形?请说明理由.
【答案】(1)证明见解析;(2)矩形,理由见解析.
【解析】
(1)根据AB//CD可知∠ABF=∠ECF,由BF=CF,∠AFB=∠CFE, 可证明△ABF≌△ECF.即可证明AB=CE.(2)根据∠AFC=2∠D 及外角性质可证明AF=BF进而证明AE=BC,即可证明四边形ABEC是平行四边形.
(1)∵F是BC的中点,
∴BF=CF.
∵在四边形中,AB//CD,
∴∠ABF=∠ECF,
∵∠AFB=∠CFE,
∴△ABF≌△ECF,
∴AB=CE.
(2)四边形ABEC是矩形,理由如下:
∵△ABF≌△ECF,
∴EF=AF,
∵BF=CF,
∴四边形ABEC是平行四边形.
∴∠ABF=∠D,
∵∠AFC=2∠D,∠AFC=∠ABF+∠BAF,
∴∠ABF=∠BAF,
∴AF=BF,
∴AE=BC,
∴四边形ABEC是矩形.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+5(a≠0)交直线y=kx+n(k>0)于A(1,1),B两点,交y轴于点C,直线AB交y轴于点D.已知该抛物线的对称轴为直线x=.
(1)求a,b的值;
(2)记直线AB与抛物线的对称轴的交点为E,连接CE,CB.若△CEB的面积为,求k,n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)(问题发现)如图1,在Rt△ABC中,AB=AC,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,请判断线段BE与AF的数量关系并写出推断过程;
(2)(拓展研究)在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;
(3)(结论运用)在(1)(2)的条件下,若△ABC的面积为2,当正方形CDEF旋转到B,E,F三点在同一直线上时,请直接写出线段AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一位同学想利用树影测量树高(AB),他在某一时刻测得高为1m的竹竿影长为0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上(CD),他先测得留在墙上的影高(CD)为1.2m,又测得地面部分的影长(BC)为2.7m,他测得的树高应为多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xoy中,A(﹣3,0),B(0,1),形状相同的抛物线Cn(n=1,2,3,4,…)的顶点在直线AB上,其对称轴与x轴的交点的横坐标依次为2,3,5,8,13,…,根据上述规律,抛物线C2的顶点坐标为_____;抛物线C8的顶点坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的方程ax2﹣(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1﹣x1x2+x2=1﹣a,则a的值是( )
A. 1B. ﹣1C. 1或﹣1D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O的内接三角形ABC中,,,过C作AB的垂线l交⊙O于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.
(1)求证:;
(2)若, ,求PD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.
(1)如图①,当点D落在BC边上时,求点D的坐标;
(2)如图②,当点D落在线段BE上时,AD与BC交于点H.
①求证△ADB≌△AOB;
②求点H的坐标.
(3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在边长为6的正方形ABCD中,点E是射线BC上的动点(不与B,C重合),连结AE,将△ABE沿AE向右翻折得△AFE,连结CF和DF,若△DFC为等腰三角形,则BE的长为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com