| A. | 2 | B. | 4 | C. | 2$\sqrt{3}$ | D. | 2$\sqrt{7}$ |
分析 可设两直角边分别为2x,$\sqrt{3}$x,根据条件可求出x,从而得到两直角边的长,然后根据勾股定理就可求出斜边的长.
解答 解:由题可设两直角边分别为2x,$\sqrt{3}$x,
根据题意可得,
$\frac{1}{2}$×2x×$\sqrt{3}$x=4$\sqrt{3}$,
解得x1=2,x2=-2(负去),
∴两直角边分别为4,2$\sqrt{3}$,
根据勾股定理可得,
斜边长为$\sqrt{{4}^{2}+(2\sqrt{3})^{2}}$=2$\sqrt{7}$.
故选D.
点评 本题主要考查了直角三角形的面积公式、勾股定理等知识,出现线段比,通常设一份为x,然后把相关线段用x的代数式表示.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com