精英家教网 > 初中数学 > 题目详情

【题目】某种流感病毒,有一人患了这种流感,在每轮传染中一人将平均传给x人:

1)第一轮后患病的人数为 ;(用含x的代数式表示)

2)在进入第二轮传染之前,有两位患者被及时隔离并治愈,问第二轮传染后总共是否会有21人患病的情况发生,请说明理由.

【答案】1)(1+x)人;(2)第二轮传染后共会有21人患病的情况不会发生.

【解析】

1)根据题意,开始有一人患了流感,第一轮的传染源就是这个人,他传染了x人,则第一轮后共有(1+x)人患了流感;
2)第二轮传染中,这些人中的每个人又传染了x人,因进入第二轮传染之前,有两位患者被及时隔离并治愈,则第二轮后共有x-1+xx-1)人患了流感,而此时患流感人数为21,根据这个等量关系列出方程若能求得正整数解即可会有21人患病.

解:(1)第一轮后患病的人数为(1+x)人;

2)设在每轮传染中一人将平均传给x人,

根据题意得:x-1+xx-1=21

整理得:x2-1=21

解得:

x1x2都不是正整数,

∴第二轮传染后共会有21人患病的情况不会发生.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】将两个全等的等腰直角三角形摆成如图所示的样子(图中的所有点,线都在同一平面内),请在图中找出一组相似的三角形,并说明它们相似的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BE⊙O的直径,点AEB的延长线上,弦PD⊥BE,垂足为C,连接OD

∠AOD=∠APC

1)求证:AP⊙O的切线;

2)若⊙O的半径是4AP=4,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O是等边内一点绕点C按顺时针方向旋转,连接已知

求证:是等边三角形;

,试判断的形状,并说明理由;

探究:当为多少度时,是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+bx+3x轴于点A(﹣10)和点B30),与y轴交于点C

1)求抛物线的解析式;

2)连接BC,若点P为线段BC上的一个动点(不与点B、点C重合),过点P作直线PNx轴于点N,交抛物线于点M,当△BCM面积最大时,求△BPN的周长.

3)在(2)的条件下,当△BCM面积最大时,在抛物线的对称轴上是否存在点Q,使△CNQ为等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,已知AB=4BC=3,矩形在直线l上绕其右下角的顶点B向右旋转90°至图位置,再绕右下角的顶点继续向右旋转90°至图位置,,以此类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是( )

A.2015πB.3019C.3018πD.3024π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知P是⊙O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有动点A、B(不与P,Q重合),连接AP、BP. 若∠APQ=BPQ.

(1)如图1,当∠APQ=45°,AP=1,BP=2时,求⊙O的半径;

(2)如图2,选接AB,交PQ于点M,点N在线段PM(不与P、M重合),连接ON、OP,若∠NOP+2OPN=90°,探究直线ABON的位置关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知O是坐标原点,BC两点的坐标分别为(3,-1)、(21).

1)以O点为位似中心在y轴的左侧将OBC放大到两倍(即新图与原图的相似比为2),画出图形;

2B点的对应点B′的坐标是 C点的对应点C′的坐标是

3)在BC上有一点Pxy),按(1)的方式得到的对应点P′的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.

(1)以直线BC为轴,把△ABC旋转一周,求所得圆锥的底面圆周长

(2)以直线AC为轴,把△ABC旋转一周,求所得圆锥的侧面积;

查看答案和解析>>

同步练习册答案