【题目】孙老师在上《等可能事件的概率》这节课时,给同学们提出了一个问题:“如果同时随机投掷两枚质地均匀的骰子,它们朝上一面的点数和是多少的可能性最大?”同学们展开讨论,各抒己见,其中小芳和小超两位同学给出了两种不同的回答.小芳认为6的可能性最大,小超认为7的可能性最大.你认为他们俩的回答正确吗?请用列表或画树状图等方法加以说明.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体.)
【答案】小超的回答正确,图表见解析
【解析】
根据题意列表,再根据表中的数据可求出所有等可能的结果数及点数之和等于6和点数之和等于7的情况数,然后分别求出点数之和等于6与点数之和等于7的概率,由此可作出判断.
列表如下
(1,6) | (2,6) | (3,6) | (4,6) | (5,6) | (6,6) |
(1,5) | (2,5) | (3,5) | (4,5) | (5,5) | (6,5) |
(1,4) | (2.4) | (3,4) | (4,4) | (5.4) | (6,4) |
(1,3) | (2,3) | (3,3) | (4,3) | (5,3) | (6,3) |
(1,2) | (2,2) | (3,2) | (4,2 | (5,2) | (6,2) |
(1,1) | (2,1) | (3,1) | (4.1) | (5,1) | (6,1) |
共有36种等可能的结果数,其中点数之和等于6占5种,点数之和等于7的占6种,
∴点数之和为6的概率为 ,点数之和为7的概率为
故小超的回答正确.
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,AB=4,AD=10,E是AD的一点,且AE=2,M是AB上一点,射线ME交CD的延长线于点F,EG⊥ME交BC于点G,连接MG,FG,FG交AD于点N.
(1)当点M为AB中点时,则DF= ,FG= .(直接写出答案)
(2)在整个运动过程中,的值是否会变化,若不变,求出它的值;若变化,请说明理由.
(3)若△EGN为等腰三角形时,请求出所有满足条件的AM的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践
如图①,在中中,,,,过点作于,将绕点逆时针方向旋转,得到,连接,,记旋转角为.
(1)问题发现
如图②,当时,__________;如图③,当时,__________.
(2)拓展探究
试判断:当时,的大小有无变化?请仅就图④的情形给出证明.
(3)问题解决
如图⑤,当绕点逆时针旋转至点落在边上时,求线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】河南省政府为促进农业发展,加快农村建设,计划扶持兴建一批新型钢管装配式大棚,如图1所示线段AB、BD分别为大棚的墙高和跨度,AC表示保温板的长,已知墙高AB为3米,墙面与保温板所成的角∠BAC=150°,在点D处测得A点、C点的仰角分别为9°,15.6°,如图2所示求保温板AC的长是多少米?(精确到0.1米)(参考数据:sin9°≈0.16,cos9°≈0.99,tan9°≈0.16,sin15.6°≈0.27,cos15.6°≈0.96,tan15.6°≈0.28,≈1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 在三边互不相等的△ABC中, D,E,F分别是AB,AC,BC边的中点.连接DE,过点C作CM∥AB交DE的延长线于点M,连接CD、EF交于点N,则图中全等三角形共有( )
A.3对B.4对C.5对D.6对
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】张老师在讲解复习《圆》的内容时,用投影仪屏幕展示出如下内容:
张老师让同学们添加条件后,编制一道题目,并按要求完成下列填空.
(1)在屏幕内容中添加条件,则的长为______.
(2)以下是小明、小聪的对话:
参考上面对话,在屏幕内容中添加条件,编制一道题目(此题目不解答,可以添线、添字母).
_________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与轴交于、两点,,交轴于点,对称轴是直线.
(1)求抛物线的解析式及点的坐标;
(2)连接,是线段上一点,关于直线的对称点正好落在上,求点的坐标;
(3)动点从点出发,以每秒2个单位长度的速度向点运动,过作轴的垂线交抛物线于点,交线段于点.设运动时间为()秒.若与相似,请求出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果店以10元/千克的价格购进某种水果进行销售,经过市场调查获得部分数据如下表:
销售价格x(元/千克) | 10 | 13 | 16 | 19 | 22 |
日销售量y(千克) | 100 | 85 | 70 | 55 | 40 |
(1)请根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识刻画y与x之间的函数关系;
(2)该水果店应该如何确定这批水果的销售价格,才能使日销售利润最大?
(3)若该水果店平均每销售1千克这种水果会损耗a千克,当20≤x≤22时,水果店日获利的最大值为405元,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以点为圆心,为半径作优弧,连接,,且,在弧上任意取点(点在点的顺时针方向)且使,以为边向弧内作正三角形.
(1)发现:不论点在弧上什么位置,点与点的距离不变,点与点的距离是_____;点到直线的最大距离是_______.
(2)思考:当点在直线上时,求点到的距离,在备用图1中画出示意图,并写出计算过程.
(3)探究:当与垂直或平行时,直接写出点到的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com