精英家教网 > 初中数学 > 题目详情

【题目】综合与实践

如图①,在中中,,过点,将绕点逆时针方向旋转,得到,连接,记旋转角为

1)问题发现

如图②,当时,__________;如图③,当时,__________

2)拓展探究

试判断:当时,的大小有无变化?请仅就图④的情形给出证明.

3)问题解决

如图⑤,当绕点逆时针旋转至点落在边上时,求线段的长.

【答案】1;(2)无变化,理由详见解析;(3

【解析】

1)首先利用勾股定理可求出AB的值,再根据三角形面积求出CD的值,再次利用勾股定理求出ADBD的值,再分情况进一步得出的值即可;

2)根据旋转的性质可得出,再证明即可得出结论;

3)过点,证,推出,得出,继而得到,再根据,即可得出答案.

解:(1)∵

时,

时,

故答案为:

2)无变化.

证明:∵在中,

,即

由旋转可知

3)如图,过点

,即

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在下面的两位数18 2736 455463728199都是9的整数倍,小明发现这些数的个位数字与十位数字的和也都是9的整数倍,例如18的的个位数字8与十位数字1的和是9.于是小明有了这样的结论:个位数字与十位数字的和是9的倍数的两位数一定是9的倍数.小明经过思考后给出了如下的证明:

设十位上的数字为,个位上的数字为,并且为正整数)

那么这个两位数可表示为

∴这个两位数是9的倍数

小明猜想:个位数字与十位数字与百位数字的和是9的倍数的三位数也一定是9的倍数.小明的这个猜想的结论是否正确?若正确模仿小明的证明思路给出证明,若不正确举出反例.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线和抛物线为正整数).

1)抛物线轴的交点______,顶点坐标______

2)当时,请解答下列问题.

①直接写出轴的交点______,顶点坐标______,请写出抛物线的一条相同的图象性质______

②当直线相交共有4个交点时,求的取值范围.

3)若直线)与抛物线,抛物线为正整数)共有4个交点,从左至右依次标记为点,点,点,点,当时,求出之间满足的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现如今,“垃圾分类”意识已深入人心,垃圾一般可分为:可回收物、厨余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了两袋垃圾.

1)直接写出甲所拿的垃圾恰好是“厨余垃圾”的概率;

2)求乙所拿的两袋垃圾不同类的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如图,把经过抛物线 ( 为常数)轴的交点和顶点的直线称为抛物线的“伴线”,若抛物线与轴交于两点(的右侧),经过点和点的直线称为抛物线的“标线”.

(1)已知抛物线,求伴线的解析式.

(2)若伴线为,标线为

①求抛物线的解析式;

②设为“标线”上一动点,过平行于“伴线”,交“标线”上方的抛物线于,求线段长的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,∠AOB70°,以点O为圆心,以适当长为半径作弧分别交OAOBCD两点;分别以CD为圆心,以大于CD的长为半径作弧,两弧相交于点P;以O为端点作射线OP,在射线OP上取点M,连接MCMD.若测得∠CMD40°,则∠MDB_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点EF分别在矩形ABCD的边ABBC上,连接EF,将BEF沿直线EF翻折得到HEFAB8BC6AEEB31

1)如图1,当∠BEF45°时,EH的延长线交DC于点M,求HM的长;

2)如图2,当FH的延长线经过点D时,求tanFEH的值;

3)如图3,连接AHHC,当点F在线段BC上运动时,试探究四边形AHCD的面积是否存在最小值?若存在,求出四边形AHCD的面积的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】孙老师在上《等可能事件的概率》这节课时,给同学们提出了一个问题:“如果同时随机投掷两枚质地均匀的骰子,它们朝上一面的点数和是多少的可能性最大?”同学们展开讨论,各抒己见,其中小芳和小超两位同学给出了两种不同的回答.小芳认为6的可能性最大,小超认为7的可能性最大.你认为他们俩的回答正确吗?请用列表或画树状图等方法加以说明.(骰子:六个面上分别刻有123456个小圆点的小正方体.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,将抛物线y=ax2(a<0)平移到顶点M恰好落在直线y=x+3上,且抛物线过直线与y轴的交点A,设此时抛物线顶点的横坐标为m(m>0).

(1)用含m的代数式表示a

(2)如图2RtCBT与抛物线交于CDT三点,∠B=90BCx轴,CD=2BD=tBT=2t,△TDC的面积为4

①求抛物线方程;

②如图3P为抛物线AM段上任一点,Q(04),连结QP并延长交线段AMN,求的最大值.

查看答案和解析>>

同步练习册答案