分析 (1)由正方形的性质和已知条件证明∠BAE=∠FEC,即可证明:△ABE∽△ECF;
(2)根据等边三角形的性质得到∠B=∠C=60°,于是得到∠BAD+∠ADB=120°,根据已知条件得到∠ADB+∠CDE=120°,等量代换得到∠BAD=∠CDE,推出△ABD∽△DCE,由相似三角形的性质得到$\frac{AB}{CD}=\frac{BD}{CE}$,代入数据即可得到结论.
解答 (1)证明:∵四边形ABCD是正方形,
∴∠B=∠C=90°,
∴∠BAE+∠BEA=90°,
∵EF⊥AE,
∴∠AEF=90°,
∴∠BEA+∠FEC=90°,
∴∠BAE=∠FEC,
∴△ABE∽△ECF;
(2)解:∵△ABC是等边三角形,
∴∠B=∠C=60°,
∴∠BAD+∠ADB=120°,
∵∠ADE=∠ABC,
∴∠ADE=60°,
∴∠ADB+∠CDE=120°,
∴∠BAD=∠CDE,
∴△ABD∽△DCE,
∴$\frac{AB}{CD}=\frac{BD}{CE}$,
∵AB=3,BD=x,CE=y,
∴$\frac{3}{3-x}=\frac{x}{y}$,
∴y=-$\frac{1}{3}$x2+x.
点评 本题考查了相似三角形的判定和性质,正方形的性质,等边三角形的性质,求二次函数的解析式,证得△ABD∽△DCE是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2cm | B. | 4cm | C. | 2$\sqrt{2}$cm | D. | 4$\sqrt{2}$cm |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com