【题目】如图,过点A(1,0)作x轴的垂线与直线y=x相交于点B,以原点O为圆心、OA为半径的圆与y轴相交于点C、D,抛物线y=x2+px+q经过点B、C.
(1)求p、q的值;
(2)设抛物线的对称轴与x轴相交于点E,连接CE并延长与⊙O相交于点F,求EF的长;
(3)记⊙O与x轴负半轴的交点为G,过点D作⊙O的切线与CG的延长线相交于点H.点H是否在抛物线上?说明理由.
【答案】(1)p=1,q=﹣1;(2);(3)点H在抛物线y=x2+x﹣1上.详见解析
【解析】
(1)根据点A(1,0)作x轴的垂线与直线y=x相交于点B,从而求出B点的坐标,以及C点的坐标,将B,C分别代入即可求出p,q的值;
(2)运用配方法求出二次函数的顶点坐标,再利用勾股定理求出CE的长,由Rt△CFD∽Rt△COE,求出EF的长;
(3)首先求出直线CG为:y=x1,进而求出点H的坐标为(2,1).代入解析式即可.
(1)∵点A(1,0)作x轴的垂线与直线y=x相交于点B点,
∴B(1,1),
∵以原点O为圆心、OA为半径的圆与y轴相交于点C、点A(1,0),
∴C(0,﹣1).
代入y=x2+px+q,得,解得
故p=1,q=﹣1.
∴
(2)∵,
∴E(,0)
∴.
连接DF,
∵CD是直径,
∴∠CFD=90°,
又∠COE=90°,∠FCD=∠OCE
∴Rt△CFD∽Rt△COE,
得,即
∴.
∴.
(3)设过点C、G的直线为y=kx+b.
将点C(0,﹣1),G(﹣1,0)代入得,
解得
得直线CG为:y=﹣x﹣1.
设过点D作⊙O的切线与CG的延长线相交于点H.
∵DH平行于x轴,
∴点H的纵坐标为1.
将y=1代入y=﹣x﹣1,得x=﹣2.
∴点H的坐标为(﹣2,1).
又当x=﹣2时,y=x2+x﹣1=1,
∴点H在抛物线y=x2+x﹣1上.
科目:初中数学 来源: 题型:
【题目】2020年1月新冠肺炎大面积爆发,大批的医护人员积极前赴武汉支援一线救治,但是大批的医用物资仍旧极度短缺,我市某中学九年级一班全体同学参加了“加油武汉,加油中国”捐款活动,该班同学捐款情况的部分统计图如图所示:
(1)求该班的总人数,将条形图补充完整.
(2)求出捐款金额的平均数、众数、中位数;
(3)若想在捐款金额为25元的四名同学、、、中选取2位同学负责把钱交到红十字会,请用列表法或画树形图的方法求出恰好选中、两名同学的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E。那么点D的坐标为( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点D,E运动的时间是ts(0<t≤15),过点D作DF⊥BC于点F,连接DE,EF,若四边形AEFD为菱形,则t的值为( )
A.20B.15C.10D.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为.
如果图中的圆圈共有13层,请问:自上往下,在每个圆圈中按图3的方式填上一串连续的正整数1,2,3,4,……,则最底层最左边这个圆圈中的数是__________;自上往下,在每个圆圈中按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,﹣20,……,则所有圆圈中各数的绝对值之和为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.
(1)求甲、乙两种办公桌每张各多少元?
(2)若学校购买甲乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c的对称轴是直线x=﹣2.抛物线与x轴的一个交点在点(﹣4,0)和点(﹣3,0)之间,其部分图象如图所示,下列结论中正确的个数有( )①4a﹣b=0;②c≤3a;③关于x的方程ax2+bx+c=2有两个不相等实数根;④b2+2b>4ac.
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在△ABC中,AC=BC=m,D是AB边上的一点,将∠B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A,C重合),折痕交BC边于点E.
(1)特例感知 如图1,若∠C=60°,D是AB的中点,求证:AP=AC;
(2)变式求异 如图2,若∠C=90°,m=6,AD=7,过点D作DH⊥AC于点H,求DH和AP的长;
(3)化归探究 如图3,若m=10,AB=12,且当AD=a时,存在两次不同的折叠,使点B落在AC边上两个不同的位置,请直接写出a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形的边长为4,延长至E使,以为边在上方作正方形,延长交于M,连接,,H为的中点,连接分别与,交于点N、K.则下列结论:
①;②;③;④.
其中正确的是______________.(填写所有正确结论的序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com