【题目】抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论的个数为( )
A. 1个B. 2个C. 3个D. 4个
【答案】C
【解析】
由抛物线与x轴有两个交点得到b2-4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=-1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D(-1,2)得a-b+c=2,由抛物线的对称轴为直线x=-=-1得b=2a,所以c-a=2;根据二次函数的最大值问题,当x=-1时,二次函数有最大值为2,即只有x=-1时,ax2+bx+c=2,所以说方程ax2+bx+c-2=0有两个相等的实数根.
∵抛物线与x轴有两个交点,
∴b24ac>0,所以①错误;
∵顶点为D(1,2),
∴抛物线的对称轴为直线x=1,
∵抛物线与x轴的一个交点A在点(3,0)和(2,0)之间,
∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,
∴当x=1时,y<0,
∴a+b+c<0,所以②正确;
∵抛物线的顶点为D(1,2),
∴ab+c=2,
∵抛物线的对称轴为直线x==1,
∴b=2a,
∴a2a+c=2,即ca=2,所以③正确;
∵当x=1时,二次函数有最大值为2,
即只有x=1时,ax2+bx+c=2,
∴方程ax2+bx+c2=0有两个相等的实数根,所以④正确.
故选:C.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点A(2,0),点B(0,),点O(0,0).△AOB绕着O顺时针旋转,得△A'OB',点A、B旋转后的对应点为A',B',记旋转角为α.
(Ⅰ)如图1,A'B'恰好经过点A时,求此时旋转角α的度数,并求出点B'的坐标;
(Ⅱ)如图2,若0°<α<90°,设直线AA'和直线BB'交于点P,求证:AA'⊥BB';
(Ⅲ)若0°<α<360°,求(Ⅱ)中的点P纵坐标的最小值(直接写出结果即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),抛物线与y轴交于点A,E(0,b)为y轴上一动点,过点E的直线与抛物线交于点B、C .
(1)则点A的坐标是 ______ ;
(2)当b = 0时(如图(2)),△ABE与△ACE的面积大小关系如何?当时,上述关系还成立吗,为什么?
(3)是否存在这样的b,使得△BOC是以BC 为斜边的直角三角形,若存在,求出b;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD.
(1)求证:BD平分∠ABC;
(2) 当∠ODB=30°时,求证:BC=OD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的一条弦,OD⊥AB,垂足为点C,交⊙O于点D,点E在⊙O上.
(1)若∠AOD=52°,求∠DEB的度数;
(2)若OC=3,OA=6,求tan∠DEB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以△ABC的BC边上一点O为圆心,经过A,C两点且与BC边交于点E,点D为CE的下半圆弧的中点,连接AD交线段EO于点F,若AB=BF.
(1)求证:AB是⊙O的切线;
(2)若CF=4,DF=,求⊙O的半径r及sinB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知⊙O和⊙O上的一点A(如图).
(1)作⊙O的内接正方形ABCD和内接正六边形AEFCGH;
(2)在(1)题的作图中,如果点E在上,求证:DE是⊙O内接正十二边形的边.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com