精英家教网 > 初中数学 > 题目详情

【题目】如图(1),抛物线与y轴交于点A,E(0,b)为y轴上一动点,过点E的直线与抛物线交于点B、C .

(1)则点A的坐标是 ______

(2)当b = 0时(如图(2)),△ABE与△ACE的面积大小关系如何?当时,上述关系还成立吗,为什么?

(3)是否存在这样的b,使得△BOC是以BC 为斜边的直角三角形,若存在,求出b;若不存在,说明理由.

【答案】(1)(0,-4);(2) 相等,成立,理由见解析;(3)存在, b=4-2时,ΔOBC为直角三角形,理由见解析.

【解析】

解:(1)点A的坐标为(0,-4)
(2)当b=0时,直线为

解得
所以B、C的坐标分别为(-2,-2),(2,2)

所以

时,仍有成立,理由如下

解得
所以B、C的坐标分别为
轴,轴,垂足分别为F、G,则

是同底的两个三角形
所以(3)存在这样的b
因为
所以
所以,即EBC的中点
所以当OE=CE时,OBC为直角三角形
因为
所以

所以 解得
所以当b=4-2时,ΔOBC为直角三角形

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,在两建筑物之间有一高为15米的旗杆,从高建筑物的顶端A点经过旗杆顶点恰好看到矮建筑物的底端墙角C点,且俯角a60°,又从A点测得矮建筑物左上角顶端D点的俯角β30°,若旗杆底部点GBC的中点(点B为点A向地面所作垂线的垂足)则矮建筑物的高CD_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了帮助贫困留守儿童,弘扬扶贫济困的传统美德,某校团委在学校举行“送温暖,献爱心”捐款活动,全校2000名学生都积极参与了该次活动.为了解捐款情况,随机调查了该校部分学生的捐款金额,并用得到的数据绘制出如下统计图1和图2,请根据相关信息,解答下列问题:

I)本次接受随机抽样调查的学生人数为_________________,图1m的值是_________________.

(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;

(Ⅲ)根据样本数据,估计该校本次活动捐款金额超过20元的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将抛物线M1yax2+4x向右平移3个单位,再向上平移3个单位,得到抛物线M2,直线yxM1的一个交点记为A,与M2的一个交点记为B,点A的横坐标是﹣3

1)求a的值及M2的表达式;

2)点C是线段AB上的一个动点,过点Cx轴的垂线,垂足为D,在CD的右侧作正方形CDEF

当点C的横坐标为2时,直线yx+n恰好经过正方形CDEF的顶点F,求此时n的值;

在点C的运动过程中,若直线yx+n与正方形CDEF始终没有公共点,求n的取值范围(直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在ABCBAC=60°P为边BC的中点分别以ABAC为斜边向外作Rt△ABDRt△ACEDAB=∠EAC连结PDPEDE

1)如图1α=45°=   

2)如图2α为任意角度求证PDE

3)如图3α=15°AB=8AC=6PDE的面积为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数的部分图象如图,图象过点(﹣10),对称轴为直线,下列结论:①④当时, 的增大而增大.其中正确的结论有(  

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+c的顶点为D(﹣12),与x轴的一个交点A在点(﹣30)和(﹣20)之间,其部分图象如图,则以下结论:①b24ac0;②a+b+c0;③ca=2;④方程ax2+bx+c2=0有两个相等的实数根.其中正确结论的个数为(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】盐城电视塔是我市标志性建筑之一.如图,在一次数学课外实践活动中,老师要求测电视塔的高度AB.小明在D处用高1.5 m的测角仪CD,测得电视塔顶端A的仰角为30°,然后向电视塔前进224 m到达E处,又测得电视塔顶端A的仰角为60°.求电视塔的高度AB.( 取1.73,结果精确到0.1 m)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图直线l经过正方形ABCD的顶点A,分别过此正方形的顶点B、D作BEl于点E,DFl于点F.以正方形对角线的交点O为端点,引两条相互垂直的射线分别与AD、CD交于G、H两点,若EF=2,SABE= ,则线段GH长度的最小值是____

查看答案和解析>>

同步练习册答案