精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,ABAC,∠B=30°,OBC上一点,以点O为圆心,OB长为半径作圆,恰好经过点A,并与BC交于点D

(1)判断直线CA与⊙O的位置关系,并说明理由;

(2)若AB=4,求图中阴影部分的面积(结果保留π).

【答案】1)直线CA与⊙O的切线;(2S=

【解析】

(1)连接OA,根据切线的判定进行证明;(2)先求OA,再求,阴影面积等于:

1)直线CA与⊙O相切.

如图,连接OA

ABACB30°

∴∠CB30°DOA2B60°

∴∠CAO90°,即OACA

AO上,

直线CAO相切.

2AB4ABAC

AC4

OACAC30°

OAAC·tan30°4·4

∴阴影面积等于:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为千米,出租车离甲地的距离为千米,两车行驶的时间为x小时,关于x的图象如图所示:

1)根据图象,分别写出关于x的关系式(需要写出自变量取值范围);

2)当两车相遇时,求x的值;

3)甲、乙两地间有两个加油站,相距200千米,若客车进入加油站时,出租车恰好进入加油站,求加油站离甲地的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】这是一道我们曾经探究过的问题:如图1.等腰直角三角形中,.直线经过点,过于点,过于点.易证得.(无需证明),我们将这个模型称为“一线三等角”或者叫“K形图”.接下来,我们就利用这个模型来解决一些问题:

(模型应用)

(1)如图2.已知直线l1与与坐标轴交于点AB.以AB为直角边作等腰直角三角形ABC,若存在,请求出C的坐标;不存在,若说明理由.

(2)如图3已知直线l1与坐标轴交于点AB.将直线l1绕点A逆时针旋转45°至直线l2.直线l2x轴上方的图像上是否存在一点Q,使得△QAB是以QA为底的等腰直角三角形?若存在,请求出直线BQ的函数关系式;若不存在,说明理由.

(拓展延伸)

3)直线AB轴负半轴、轴正半轴分别交于AB两点.分别以OBAB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EFy轴于P点,如图4,△EPB的面积是否确定?若确定,请求出具体的值;若不确定,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,弦BC,DE相交于点F,且DEAB于点G,过点C作⊙O的切线交DE的延长线于点H.

(1)求证:HC=HF;

(2)若⊙O的半径为5,点FBC的中点,tanHCF=m,写出求线段BC长的思路.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,学校旗杆附近有一斜坡,小明准备测量旗杆AB的高度,他发现当斜坡正对着太阳时,旗杆AB的影子恰好落在水平地面和斜坡的坡面上,此时小明测得水平地面上的影子长BC=20米,斜坡坡面上的影子CD=8米,太阳光AD与水平地面BC30°角,斜坡CD与水平地面BC45°的角,求旗杆AB的高度.(=1.732,=1.414,=2.449,精确到1米).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=30°,将ABC绕点B旋转α(0<α<60°)到A′BC′,AC和边A′C′相交于点P,边AC和边BC′相交于Q.BPQ为等腰三角形时,则α=__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数的图象交轴于点,交轴于点,点轴正半轴上,点在射线上,且垂直轴于点

坐标为________,点坐标为________.

操作:将一足够大的三角板的直角顶点放在射线或射线上,一直角边始终过点,另一直角边与轴相交于点.问是否存在这样的点,使以点为顶点的三角形与全等?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2017四川省达州市,第16题,3分)如图,矩形ABCD中,EBC上一点,连接AE,将矩形沿AE翻折,使点B落在CDF处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙OAD相切于点P.若AB=6BC=,则下列结论:①FCD的中点;②⊙O的半径是2AE=CE.其中正确结论的序号是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2+(2k-1)x+k2=0有两个实根x1x2

(1) 求实数k的取值范围

(2) 若方程两实根x1、x2满足x12-x22=0,求k的值

查看答案和解析>>

同步练习册答案