【题目】如图,在△ABC中,AB=AC,∠B=30°,O是BC上一点,以点O为圆心,OB长为半径作圆,恰好经过点A,并与BC交于点D.
(1)判断直线CA与⊙O的位置关系,并说明理由;
(2)若AB=4,求图中阴影部分的面积(结果保留π).
科目:初中数学 来源: 题型:
【题目】一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为千米,出租车离甲地的距离为千米,两车行驶的时间为x小时,、关于x的图象如图所示:
(1)根据图象,分别写出、关于x的关系式(需要写出自变量取值范围);
(2)当两车相遇时,求x的值;
(3)甲、乙两地间有、两个加油站,相距200千米,若客车进入加油站时,出租车恰好进入加油站,求加油站离甲地的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】这是一道我们曾经探究过的问题:如图1.等腰直角三角形中,,.直线经过点,过作于点,过作于点.易证得≌.(无需证明),我们将这个模型称为“一线三等角”或者叫“K形图”.接下来,我们就利用这个模型来解决一些问题:
(模型应用)
(1)如图2.已知直线l1:与与坐标轴交于点A、B.以AB为直角边作等腰直角三角形ABC,若存在,请求出C的坐标;不存在,若说明理由.
(2)如图3已知直线l1:与坐标轴交于点A、B.将直线l1绕点A逆时针旋转45°至直线l2.直线l2在x轴上方的图像上是否存在一点Q,使得△QAB是以QA为底的等腰直角三角形?若存在,请求出直线BQ的函数关系式;若不存在,说明理由.
(拓展延伸)
(3)直线AB:与轴负半轴、轴正半轴分别交于A、B两点.分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,如图4,△EPB的面积是否确定?若确定,请求出具体的值;若不确定,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,弦BC,DE相交于点F,且DE⊥AB于点G,过点C作⊙O的切线交DE的延长线于点H.
(1)求证:HC=HF;
(2)若⊙O的半径为5,点F是BC的中点,tan∠HCF=m,写出求线段BC长的思路.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,学校旗杆附近有一斜坡,小明准备测量旗杆AB的高度,他发现当斜坡正对着太阳时,旗杆AB的影子恰好落在水平地面和斜坡的坡面上,此时小明测得水平地面上的影子长BC=20米,斜坡坡面上的影子CD=8米,太阳光AD与水平地面BC成30°角,斜坡CD与水平地面BC成45°的角,求旗杆AB的高度.(=1.732,=1.414,=2.449,精确到1米).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=30°,将△ABC绕点B旋转α(0<α<60°)到△A′BC′,边AC和边A′C′相交于点P,边AC和边BC′相交于Q.当△BPQ为等腰三角形时,则α=__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数的图象交轴于点,交轴于点,点在轴正半轴上,点在射线上,且.垂直轴于点.
点坐标为________,点坐标为________.
操作:将一足够大的三角板的直角顶点放在射线或射线上,一直角边始终过点,另一直角边与轴相交于点.问是否存在这样的点,使以点,,为顶点的三角形与全等?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2017四川省达州市,第16题,3分)如图,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O与AD相切于点P.若AB=6,BC=,则下列结论:①F是CD的中点;②⊙O的半径是2;③AE=CE;④.其中正确结论的序号是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2+(2k-1)x+k2=0有两个实根x1和x2
(1) 求实数k的取值范围
(2) 若方程两实根x1、x2满足x12-x22=0,求k的值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com